共查询到20条相似文献,搜索用时 93 毫秒
1.
以南京江北新区2019年4、7、11和12月为代表分析了大气PM2.5中水溶性有机氮(WSON)的季节变化特征,探讨了WSON与水溶性无机氮(WSIN)的关系.结果表明,南京江北新区PM2.5中WSON的变化范围为0.446~4.200μg·m-3,平均值为2.04μg·m-3,略高于北京、上海和常州的观测结果.秋季PM2.5中的WSON平均值最高[(2.967±0.643)μg·m-3],约为其他3个季节的1.7倍.南京细粒子中WSON对水溶性总氮(WSTN)的平均贡献率占到25%,并表现出夏秋高、冬春低的特点,如冬季该占比仅为夏秋季的50%左右. WSON与WSIN中的NO-2-N相关性最高,与NO-3-N的相关性最低,可能与夏季高温导致NO-3-N的挥发有关.通过主成分分析(PCA)表明,南京江北新区细粒子中WSON主要... 相似文献
2.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5... 相似文献
3.
为研究淄博市城区冬季环境空气PM2.5载带金属元素的污染特征、来源和生态风险,于2019年1月8~23日在淄博市采集环境空气PM2.5滤膜样品并分析获取14种金属元素的浓度.结果表明,K含量均值为8 071.6 mg·kg-1,是含量最高的元素,但未超过山东省A层土壤背景值,说明K主要来自自然源;Zn、 Pb、 Cu、 Cr、 As、 Ni和Cd等元素含量明显低于K元素(28.4~4 282.3 mg·kg-1),但均明显高于山东省A层土壤背景值,依次为背景值的56.6、 19.0、 7.2、 2.4、 7.3、 1.4和283.8倍,反映出人为源的影响.地累积指数(Igeo)表明,冬季PM2.5中Cd、 Zn、 Pb、 Cu和As受污染程度较高,均为中度污染及以上.潜在生态风险评价结果显示Cd存在极强的生态危害风险.综合运用相关性分析、富集因子法和主成分分析多种方法解析出,土壤扬尘、机动车尾气、燃煤和冶金行业是淄博市城区环境空气PM2.5 相似文献
4.
于2020年夏季和秋冬季在厦门港海天码头和嵩屿码头进行大气PM2.5的采集,并对20种元素污染特征、来源及健康影响进行了分析.结果表明,厦门港大气PM2.5浓度较低,且两个站点的PM2.5浓度并无显著性差异,也不存在明显的昼夜差异.地壳元素中以Ca和Si的含量最高,而痕量元素中以Zn和Mn的含量为最高.与标准值相比,重金属元素中只有Cr(Ⅵ)出现超标.受风向和吞吐量季节性变化的影响,部分元素浓度在夏季高于秋冬季. Cu、 Zn、 SO2和NO2有较一致的明显昼夜变化,但来自重油燃烧排放的V和Ni并无明显昼夜差异.PMF源解析确定码头PM2.5的4个污染因子为工业源、船舶排放、交通源和海盐+建筑尘混合源,其中工业源对PM2.5浓度的贡献率最大(55.2%~59.4%),远高于船舶排放的贡献率(7.1%~7.7%).健康风险评估显示,厦门港大气PM2.5中重金属对人群具有潜在的致癌风险(>1×10-5... 相似文献
5.
为了研究海-陆大气交汇作用对沿海城市大气污染物的传输与扩散的影响,于2019年11月18日至12月23日在青岛观测站采集大气PM2.5样品,对PM2.5中的水溶性离子、无机元素和碳质组分特征进行了分析,并结合后向轨迹聚类分析模型和PMF模型等方法对青岛市冬季大气污染来源进行分析.结果表明,青岛冬季ρ(PM2.5)平均值为61.0μg·m-3,其中,ρ(水溶性离子)、ρ(无机元素)、ρ(OC)和ρ(EC)平均值分别为29.9、 5.46、 10.2和3.82μg·m-3;二次离子(SO42-、 NO-3、 NH+4)和地壳元素(Si、 K、 Ca、 Fe、 Ti)是主要的离子和元素成分,分别占水溶性离子和无机元素的89.3%和61.1%.青岛市大气主要受局部海陆风气流影响(43.4%),其次是季风气流(36.2%),冷空气气流对青岛影响较低(20.4... 相似文献
6.
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。 相似文献
7.
为深入探究重污染地区气溶胶的消光特征和健康风险,于2019年冬季开展了太原市PM2.5主要化学成分和氧化潜势的分析.采样期间ρ(PM2.5)为(89.9±33.6)μg·m-3,其中水溶性离子和碳质气溶胶分别占到43.3%和33.8%,浓度较高的组分依次为:OC>SO42->NO-3>EC>NH+4>Cl->Ca2+.随着污染程度的增加,PM2.5中有机物(OM)和矿物尘的占比下降了5.8%和11.2%,而SNA(NO-3、 SO42-和NH+4)的质量分数由33.9%显著增加到56.0%.基于IMPROVE公式估算,太原市冬季大气颗粒物的平均消光系数为(453... 相似文献
8.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH4)2SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH4)2SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响. 相似文献
9.
利用2019年9—10月广州市海珠湖大气成分观测站地表的气象要素和空气质量参数及垂直的颗粒物激光雷达观测资料,探讨不同PM2.5-O3污染类型对应的气象要素及大气污染物日变化特征、边界层内气溶胶分布特征,并对发生高PM2.5-高O3的成因进行分析.观测期间共出现25 d低PM2.5-低O3日(清洁日)、12 d低PM2.5-高O3日(污染日Ⅰ)和20 d高PM2.5-高O3日(污染日Ⅱ).对气象要素和污染物特征的分析表明,污染日Ⅱ在11:00—16:00的平均气温均超过30℃,相对湿度均低于60%,日均风速和最大J(NO2)分别为0.88 m·s-1和0.007 s-1.污染日Ⅱ与清洁日相比,其对应的气象要素表现为显著的高温低湿特征;与单一的O3污染日相比则表现为略低的光化辐射和较低... 相似文献
10.
为了解COVID-19管控期间苏州市PM2.5中金属元素浓度变化和来源,利用多金属在线监测仪于2019年12月1日~2020年3月31日测定了14种金属元素小时浓度,分析停产前、停产期和复工期金属元素浓度变化,并采用PMF模型分析其污染来源.结果表明,停产期Cr、 Mn、 Zn和Fe浓度降幅最大,较停产前分别降低了87.6%、 85.6%、 78.3%和72.2%;复工期Mn、 Cr、 Zn和Fe浓度升幅最大,较停产期分别增加了227.0%、 215.4%、 147.4%和113.4%.K在3个阶段日变化均不相同;Zn在3个阶段日变化均呈单峰形,但峰宽和峰值出现时间有所不同;Fe、 Mn、 Pb、 Se和Hg日变化无明显变化,仅仅是浓度发生了变化;Ca、 Ba、 Cu、 As、 Cr和Ni停产期和复工期日变化较停产前变化较大. PMF模型来源解析结果表明,金属元素主要来源于扬尘、机动车、燃煤、工业冶炼和混合燃烧源,其中工业冶炼源浓度变化最大,停产期浓度下降了89.0%,复工期浓度较停产期上升了358.0%. 相似文献
11.
为探究遵义市PM2.5中水溶性离子的污染特征及来源,于2018年6月~2019年5月采集了遵义市两个采样点共120个PM2.5样品,并利用离子色谱法对样品中8种水溶性离子进行了分析。结果表明:采样期间,遵义市PM2.5平均值为47.6±19.3 μg/m3,呈现冬春高、夏秋低的季节变化特征;8种水溶性离子平均质量浓度顺序为SO42- > NO3- > NH4+ > Ca2+ > K+ > Cl- > Na+ > Mg2+,平均值为13.74 μg/m3,水溶性离子质量浓度的季节变化与PM2.5变化趋势相似;SO42-、NO3-、NH4+(SNA)是PM2.5中主要水溶性离子,占比为83.8%,说明遵义市大气PM2.5二次污染较严重;相关性分析表明,PM2.5中NH4+主要以(NH4)2SO4、NH4HSO4的形式存在,部分以NH4NO3的形式存在;[NO3-]/[SO42-]小于1,表明固定源为主要污染源;主成分分析结果表明,PM2.5中水溶性离子主要来源于燃煤、交通混合源、土壤、建筑扬尘及农业源。 相似文献
12.
2013年1月北京市PM2.5区域来源解析 总被引:9,自引:11,他引:9
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献. 相似文献
13.
为研究伊犁河谷核心区春季大气细颗粒物(PM2.5)中无机元素、水溶性离子和碳组分特征和来源,于2021年4月20~29日在伊犁河谷核心区布设6个环境采样点,对PM2.5中水溶性离子、无机元素和碳组分等51种化学组分进行分析,并使用化学质量平衡(CMB)模型对其来源进行解析.结果表明,采样期间ρ(PM2.5)变化范围介于9~35μg·m-3.Si、 Ca、 Al、 Na、 Mg、 Fe和K等地壳元素占比较高,占PM2.5的12%,表明春季PM2.5受到明显的扬尘源的影响.富集因子结果表明,Zn、 Ni、 Cr、 Pb、 Cu和As元素主要来源于化石燃料燃烧和机动车排放.元素组分的空间分布特征受采样点周边环境的影响,新政府片区受燃煤源的影响较大,故As浓度较高,伊宁市局和第二水厂受机动车影响较大,Sb和Sn浓度较高.PM2.5中9种水溶性离子(WSIIs)的浓度占PM2.5的33.2%,其中ρ(SO2- 相似文献
14.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘. 相似文献
15.
为更好地了解南京江北新区大气气溶胶中水溶性离子的昼夜变化特征,冬季连续采集了2个月的PM2.5样品,研究其水溶性离子昼夜变化特征及来源解析.结果表明,观测期间水溶性离子质量浓度变化范围为17. 07~168. 43μg·m-3,均值为(59. 01±30. 75)μg·m-3,且白天的水溶性离子平均质量浓度高于夜晚. NO3-和NH4+的浓度占离子总浓度的比值在夜晚偏高,而SO42-和Cl-则在白天偏高. SO42-、NO3-和NH4+(SNA)是南京市PM2.5中最重要的水溶性离子,其质量浓度在污染天要高于清洁天.白天和夜晚的阴阳离子平衡比值(AE/CE)大于1,说明PM2.5呈酸性.相关性分析... 相似文献
16.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施. 相似文献
17.
为探讨汉中市秋季PM_(2.5)昼夜变化特征。于2015年9月7日至9月17日利用中流量大气颗粒物采样仪在汉中市三个不同站点分昼夜采集PM_(2.5)滤膜样品,并分别利用热光碳分析仪(DRI—2011)和离子色谱(Dionex—600)分析PM_(2.5)中碳组分和水溶性离子组分,主要探讨PM_(2.5)及其碳组分和水溶性离子昼夜变化特征。结果显示:汉中秋季PM_(2.5)浓度低于国家空气质量一级标准;PM_(2.5)中主要化学组分包括SNA (硫酸盐、硝酸盐、铵盐)和有机类物质,白天和夜间占比分别达到32.3%、39.6%和28.9%、39.6%; PM_(2.5)颗粒物呈酸性。除SO_4~(2-)、Mg~(2+)和Ca~(2+)之外,PM_(2.5)及其化学组分均呈现夜间浓度高于白天的特征。离子的赋存形态分析表明:SO_4~(2-)更多以(NH_4~+)_2SO_4~(2-)的形式存在于PM_(2.5)中。本文相关结果可为地方环保政策的制定提供参考和基础数据。 相似文献
18.
为探究新乡市大气PM2.5中水溶性无机离子(WSIIs)的污染演变、来源特征及其气象影响,利用URG-9000在线监测系统于2022年1月(冬季)、4月(春季)、7月(夏季)和10月(秋季)对PM2.5组分进行在线观测.结果表明,TWSIIs(总水溶性无机离子)与PM2.5的季节变化特征一致,季度ρ(TWSIIs)均值变化范围为19.62~72.15 μg·m-3,在PM2.5中的占比超过66%,WSIIs是大气PM2.5的重要组分.年均NO3-/SO42-(质量浓度比)为2.11,且呈现逐年增加的趋势,移动源对二次无机气溶胶(SNA)的影响不容忽视,年均[NH4+]/[NO3-](量比)为1.95,说明农业源是大气中氮的主要贡献者.后向轨迹分析表明,在盛行东北风且风速较大时,PM2.5中Ca2+和Mg2+的浓度较高.低温高湿的气象条件下(T<8℃,RH>60%),SOR和NOR值均较高,更多的气态前体物SO2和NO2转化为颗粒态的SO42-和NO3-.与SOR不同,在高温条件下(T>24℃),NOR并没有表现出高值特征,与高温条件下NH4NO3的分解有关.结合PMF和后向轨迹分析,来自西北方向的气团所对应的扬尘源对WSIIs的贡献较大,观测站点周边区域的低空低速气团所对应的二次硫酸盐以及二次硝酸盐和生物质源对WSIIs的贡献较大. 相似文献
19.
为研究太原市城区冬季PM2.5污染特征及来源,于2017年1月对PM2.5及其化学组分(水溶性离子、碳组分和微量元素)、气态污染物(SO2、NO2)进行在线观测,结合气象数据,分析了清洁天和污染天PM2.5及其化学组分特征,并利用正定矩阵因子分析法(positive matrix factorization,PMF)对PM2.5进行来源解析.结果表明,2017年1月太原市城区污染天PM2.5质量浓度(239.92 μg·m-3)为清洁天的5.70倍,污染天PM2.5主要化学组分SO42-、NO3-、NH4+、Cl-、OC和EC分别为清洁天的7.04、5.76、6.51、5.62、4.06和4.70倍;污染天硫的氧化速率(SOR)和氮的氧化速率(NOR)分别为0.12和0.19,明显高于清洁天,说明污染天二次转化程度更高;PMF解析结果显示,污染天二次源(35.06%)、燃煤源(30.19%)和机动车源(24.25%)较清洁天分别增长18.03%、7.39%和2.10%,说明太原市城区污染天在管控机动车和燃煤等一次排放源的基础上,更应该注意对二次源前体物的控制. 相似文献
20.
兰州城区大气PM2.5污染特征及来源解析 总被引:2,自引:5,他引:2
为探究兰州城区PM_(2.5)的污染特征及其来源,分别在兰州市城关区和西固区设置PM_(2.5)采样点,于2013年10月(非采暖期)和12月(采暖期)采集样品并进行分析,得到了PM_(2.5)及其16种化学组成的质量浓度.结果表明,兰州城区PM_(2.5)污染水平较高,平均质量浓度为129μg·m~(-3).样品无机元素平均质量浓度为:SCaFeAlMgPbZnMnTiCu,其中S、Ca、Fe、Al的质量浓度在1μg·m~(-3)以上,是主要元素组分;样品各无机元素质量浓度表现为采暖期高于非采暖期,城关区高于西固区.样品水溶性离子平均质量浓度为:SO~(2-)_4NO~-_3NH~+_4Cl~-K~+Na~+,其中SO~(2-)_4、NO~-_3、NH~+_4的质量浓度在10μg·m~(-3)以上,是主要离子组分;样品各水溶性离子质量浓度表现为采暖期高于非采暖期,西固区高于城关区.富集因子(EF)分析结果表明,元素Al、Ca、Mg、Ti的EF值均小于1以自然来源为主;元素Cu、Pb、S、Zn的EF值显著大于10,表明这4种元素在PM_(2.5)中高度富集,且主要源于人为活动造成的污染.主成分分析结果表明,交通排放源、生物质燃烧源、土壤源和二次粒子对兰州城区大气PM_(2.5)贡献显著. 相似文献