首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted to study the impact of Sulphur(S) and Phosphorus (P) on yield, nutrient status of soil and their contents in pigeonpea (Cajanus cajan) during the year 2008-2009. Seven treatments were studied in Factorial Randomized Block Design with three replications. The treatment combinations were derived from three levels of sulphur (0, 20 and 40 kg S ha(-1)) and four levels of phosphorus (0, 25, 50 and 75 kg ha(-1)). The experimental soil was medium black, slightly calcareous, clay in texture and slightly alkaline in reaction. The results indicated a significant increase in grain yield (14.81 q ha(-1)) and straw yield (41.26 q ha(-1)) of pigeonpea after 20 kg S ha(-1) and 50 kg P2O5 ha(-1) treatment with common dose of nitrogen @ 30 kg ha(-1). The increase in grain and straw yield was 102.77 and 52.87% as compare to higher over control. Maximum number of pods plant(-1), maximum number of grains pod and test weight by this treatment was also observed as compared to control. Application of S and P improved soil fertility status and S alone did not influence P availability. Hence, in order to maintain the fertility status of the soil at high level, combine application of 20 kg S ha(-1) with 50 kg P2O5 ha(-1) is essential. The residual fertility status of soil is advocated for rainfed pigeonpea crop grown on vertisol in Vidarbha region.  相似文献   

2.
Field experiment were conducted at CSK HPKV Research Farm, Palampur during Rabi seasons of 2000-01 and 2001-02, to study the response of onion (Allium cepa var Patna red) at four sulphur levels (0, 15, 30 and 60 kg ha(-1)) applied through Gypsum and S95. The analysis was done to allocate the limited availability of sulphur for maximizing net profit over fertilizer cost. The results show that the dose of sulphur under its full availability is 43.02 kg ha(-1). But under its scarce availability the maximum benefit would occur when it is applied up to 32.11 kg ha(-1) followed by even distribution of fertilizer i.e. 20 kg ha(-1). The returns following sulphur application at these rates, would be Rs 69340, 73092 and 68700 ha(-1) respectively.  相似文献   

3.
High severity of Altemaria blight disease is a major constraint in production of rapeseed-mustard in India. The aim of this study was to investigate the suppressive potential of chemicals viz., zinc sulphate, borax, sulphur, potash and calcium sulphate, aqueous extracts viz., Eucalyptus globosus (50 g l-1) leaf extract and garlic (Allium sativum) bulb (20 g l-1) extract, cow urine and bio-agents Trichoderma harzianum, Pseudomonas fluorescence in comparison with the recommended chemical fungicide (mancozeb), against foliar disease Alternaria blight of Indian mustard [Brassica juncea (L.) Czern. and Coss] under five different geographical locations of India. Mancozeb recorded the lowest mean severity (leaf: 33.1%; pod: 26.3%) of Alternaria blight with efficacy of garlic bulb extract alone (leaf = 34.4%; pod = 27.3%) or in combination with cow urine (leaf = 34.2%; pod = 28.6%) being statistically at par with the recommended chemical fungicide. Chemicals also proved effective in reducing Alternaria blight severity on leaves and pods of Indian mustard (leaf = 36.3-37.9%; pod = 27.5-30.1%). The effective treatments besides providing significant reduction in disease severity also enabled increase in dry seed yield of the crop (mancozeb = 2052 kg ha-1; garlic = 2006 kg ha-1; control = 1561 kg ha-1).  相似文献   

4.
The spatial distribution patterns of the nitrogen and phosphorus input/intake amounts in crop production within two small basins are examined, based upon a cropping unit distribution map that is obtained from remote sensing data analysis. Firstly, we examine the availability and suitability of approaches to the spatial distribution analysis of cultivation patterns classified from material flow characteristics of crop production using seasonal remote-sensing data. Secondly, material flow units in crop production are grouped according to the cultivation patterns obtained from the remote-sensing data analysis. Consequently, the spatial patterns of the amounts of both nitrogen and phosphorus inputs/intakes through crop production on farmland are examined and their spatial distribution maps are prepared according to the material flow units. In addition, we developed a nitrogen flow and runoff model and the model is simulated based on the examination of the results of spatial distribution patterns of the material flow units. The annual nitrogen runoff from small catchments, where various crops are cultivated, varies from 2.7 kg ha(-1) year(-1) to 108 kg ha(-1) year(-1) and the annual balanced losses of nitrogen in small catchments varied from -30 kg ha(-1) year(-1) to 101 kg ha(-1) year(-1). Also, the monthly changes in soil nitrogen of each material flow unit is estimated at -55 kg ha(-1) as a maximum decrease and 114 kg ha(-1) as a maximum increase. These results indicate that the spatial distribution patterns of nutrient input and intake through agricultural activities should be considered when analyzing the material flows and nutritient movement in soil-water systems in rural areas for watershed environmental control and regional agricultural management.  相似文献   

5.
Multiple cropping (i.e. intercropping or mixed cropping) plays an important role in agriculture because of the effective utilization of resources, significantly enhancing crop productivity compared with that of monocultured crops. The study was planed to assess the effect of various concentrations (00, 30, 60, 90 kg ha(-1)) of phosphorous on the biochemical composition of grains of Hordeum vulgare L. (NDB-1050) in mixed cropping system with Chickpea. Phosphorous is an essential ingredient for plants to convert atmospheric N (N2) into an ammonium (NH4) as a useable form. The available nitrogen content was found more in the year 2006 (131 kg ha(-1)) than year 2005 (105 kg ha(-1)). The results of available nitrogen content were showed that the mixed cropping system enhances N fixation process because phosphorous also influences nodule development through its basic functions in plants as an energy source. Reducing, non reducing and total sugar content of H. vulgare L. were influenced by changes in the phosphorous doses. Maximum protein (13.43%) was obtained at 60 kg P2O5 ha(-1) during the year 2006. Lysine, tryptophan and methionine content were found maximum in year 2006, respectively. Total mineral content of grains of plant (0.99 g 100g(-1)) was found maximum by the application of 60 kg P2O5 ha(-1). It is possible that there was an increase in the soil N made available by the leguminous chickpea species, and this could be another reason why there was an increase in Hordeum vulgare L. shoot mass per plant with intercropping with chickpea.  相似文献   

6.
华北平原夏玉米季化肥氮去向及土壤氮库盈亏定量化探索   总被引:2,自引:0,他引:2  
为提高华北平原夏玉米种植体系的氮肥利用率、减少氮肥对环境的污染,对前人的15N示踪试验数据进行整理核算,分析肥料氮、作物氮、土壤氮三者之间的关系,探明夏玉米季化肥氮的去向及土壤氮库的盈亏情况。结果表明:华北平原地区玉米产量最高时施氮量平均为190 kg·hm-2;秸杆吸氮量高于籽粒,且吸氮量随施氮量增加而升高,土壤残留量和损失量有随施氮量增加而增加的趋势;土壤氮库盈亏量与施氮量之间呈现线性极显著正相关,在秸秆50%和100%还田的两种条件下,施氮量为198 kg·hm-2和137 kg·hm-2时,土壤氮库达到平衡;推荐施氮条件下夏玉米对氮肥的吸收利用率远高于传统施氮,过量施氮会引起作物产量和氮肥利用率降低的负效应,增加土壤氮素残留和损失;施氮量在40~360 kg·hm-2范围内时,3种秸秆处理方式下,氮肥各去向绝对量与施氮量之间均呈显著线性相关关系;而氮肥各去向比率与施氮量之间只有地上部吸收率和籽粒吸收率与施氮量之间呈显著线性相关关系。由此,明确了华北平原夏玉米合理施氮量:秸秆50%还田时,为198 kg·hm-2;秸秆100%还田时,为137 kg·hm-2,揭示了华北平原夏玉米施氮量与土壤氮库盈亏量呈线性极显著正相关。这为确定华北平原夏玉米合理施氮量,提高氮肥利用率,避免肥料浪费及其对环境的危害提供了理论依据。  相似文献   

7.
This is the first study in the Delhi region that assesses the critical load capacity of soil systems with respect to the atmospheric deposition and air quality, from July to October in 2012. Trend analysis of NO2 and SO2 in Delhi, using the Central Pollution Control Board (CPCB) data, showed interesting patterns matching with the trends in vehicular load in the city. This was followed by the calculation of the critical load of atmospheric acidity for sulphur and nitrogen in order to check the vulnerability of the soil systems in Delhi. Here, the steady state mass balance approach was majorly applied and the study conducted in the Agra region was taken as reference. The calculated values of critical loads of sulphur (225–275?eq/ha/yr) and nitrogen (298–303?eq/ha/yr), for the soil system in Delhi, were calculated with respect to three plant species, namely Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S)?=?26.40?eq/ha/yr) and nitrogen (PL(N)?=?36.51?eq/ha/yr) were found to be much lower than their respective critical loads. From the results, it can be concluded that the present loads of atmospheric acidic deposition in Delhi region do not pose any danger of acidification of soil system because it is countered by buffering capacity of soil generated dust. However, considering the pace at which the city is growing, it is likely that in coming decades, the present load will increase and thus the values evaluated in this study are likely to serve as an important reference for future assessment of the pollution scenario in the city.  相似文献   

8.
Greenhouse experiments were carried out for phytoremediation of the Pb/Zn abandoned tailings (pH 3.2 and high metal content) of Rampura-Agucha Mines, Rajasthan. Vigna unguiculata (L.) Walp. (cowpea) was chosen as a test crop. On unamended tailings, the seeds of the test plant showed no germination. The tailing was amended with lime (3% on weight basis), 3% lime + NPK (diammonium phosphate at 60 kg/ha, muriate of potash at 40 kg/ ha) and 3% lime + FYM at 15 t/ha and used for experiments. Quantification of various parameters viz. shoot-root length, shoot-root dry weight, chlorophyll contents (a', 'b' and total) and peroxidase activity of test crop revealed T+ S + 3% lime + NPK to be the most suitable amelioration followed by FYM. The above treatments helped in improving the growth and productivity of the test plants by providing a favorable environment.  相似文献   

9.
为了探索培育高产粮田的施肥模式,实现氮肥资源的高效利用与环境效益,以华北平原的小麦(Triticum aestivum)-玉米(Zea mays L.)轮作体系作为研究对象,通过2007─2011年4个轮作季,探讨不同的施肥模式对作物产量和土壤硝态氮的影响。试验以处理A(当地传统管理)作为对照,从测土确定施肥量、按作物生长发育明确施肥时期、合理分配各时期的养分配比及增施有机肥等方面改变传统施肥模式,设置3种高产施肥培育模式,分别为处理B(现有高产田推荐管理)、处理C(高肥料投入管理)和处理D(水肥高效管理),进行田间小区试验。4个轮作季的总产量以处理D为最高,达75430 kg·hm-2,其次是处理C为75166 kg·hm-2,当地传统的产量最低。冬小麦季的吸氮量为处理C和D显著高于A处理,分别高出444.78 kg·hm-2和310.20 kg·hm-2,但与处理B无显著差异;处理D在夏玉米季的吸氮量为776.75 kg·hm-2,显著高于处理A。处理B的氮肥偏生产力值最高为38.21,处理D为36.71,处理A和C均为28.33。各处理经过4个轮作季后,土壤硝态氮均在120-160 cm出现累积峰,A、B、C和D的硝态氮峰值分别为58.65、28.98、105.89、45.29 mg·kg-1。在0-100cm土层,处理B的硝态氮累积量达到144.22 kg·hm-2,显著高于处理A、C、D;所有处理在100-200 cm土层均出现较高的硝态氮累积,处理C高达1021.19 kg·hm-2;0-400 cm的土壤硝态氮累积量分别为724.27、711-92、1324.30、730.70 kg·hm-2。处理A、B、C、D在耕层土壤氮素的表观损失分别为1298.95、653.18、1236.39和718.43 kg·hm-2,处理B、D显著低于处理A、C,D和B间差异不显著。因此,处理D是培育高产的理想施肥模式,合理的施肥量、科学的施肥时期以及有机无机的合理配比是达到高产、提高肥效和环境友好的关键。  相似文献   

10.
We present soil surface nitrogen (N) budgets for the agricultural sector of India, calculated as inputs minus outputs over 21 agroecological zones (AEZ), for 2000–2001. Nearly 35.4 Tg N was input from different sources, with output from harvested crops of about 21.2 Tg N. Soil surface N balance for agricultural lands showed a surplus of about 14.4 Tg. Livestock manure constituted 44% of total inputs, followed by 32.5% from inorganic fertilizer, 11.9% from atmospheric deposition and 11.6% from N fixation. Though the N balance was negative in some states, due to aggregation of states in agroecological regions, all regions showed surplus N loads, with a range of about 19–110 kg/ha. The lowest loads were found for AEZ 17 in the Eastern Himalaya, with 19 kg/ha surplus, and the highest surplus N load in AEZ 7 with 111 kg/ha in Deccan plateau and the Eastern Ghats. Temporal trends in fertilizer consumption from 1950–2000 for India suggested a massive increase of ~47-fold, whereas production of major crops, rice, wheat and maize, increased nearly ~4.0-, 10- and 6-fold, respectively. Fertilizer consumption patterns were highly concentrated in Tamilnadu (204.6 kg/ha), Haryana (132.0 kg/ha) and Punjab (148.6 kg/ha). The paper addresses the role of agricultural intensification and its implications for water quality in agroecological regions of India.  相似文献   

11.
Gene flow between cultivars within a landscape may lead to impurities that reduce harvest value. In OSR, as for most crops, impurity rates are expected to depend on the spatial distribution of crops over the landscape. However, in contrast to other well-studied crops such as maize, OSR crops generate seed banks in European agro-ecosystems. Gene flow is thus a spatio-temporal process which depends on cropping systems. We therefore aimed at identifying spatial variables that have an effect on regional or local harvest impurities, taking account of the time since the introduction of OSR crops in the regions and of cropping system. Gene flow was simulated over 36 field patterns cultivated with either 15% or 30% of OSR fields, among which 10% or 50% were GM, for three contrasted cropping systems, with the GeneSys software already used for EU co-existence studies. Through regression analyses, we determined spatial and agronomic factors that most affected harvest impurity rates of non-GM OSR after one or seven years of OSR cultivation. The cropping system was the main factor explaining regional harvest impurity rates. Its importance increased after six years of OSR cultivation. For a given cropping system, the regional impurity rate after one year increased linearly with the current proportion of GM crop. In contrast, impurity rates after six years largely depended on the proportions of OSR crop (GM or not) in the two preceding years. During the first year of OSR cultivation, local impurity rates were mostly explained by the distance to the closest GM field. After six years, these rates were mostly explained by the density of GM volunteers in the analysed field and, to a lesser degree, to that of volunteers in neighbour non-OSR fields. Cropping systems were most important in determining impurity rates and the way impurity rates related to regional or local factors. Determination of isolation distances to ensure harvest purity should thus consider past history of OSR cultivation in the area and, in particular, how current or future cropping systems will manage volunteers. Regression quantiles were fitted to the simulated data to determine regional rules (i.e. the maximum regional area of GM OSR and isolation distances between GM and non-GM crops) as a function of the risk accepted by the decision-maker (i.e. the % of situations exceeding harvest impurity thresholds), the cropping system and the volunteer infestation.  相似文献   

12.
The crop models in the Decision Support System for Agrotechnology Transfer (DSSAT) have served worldwide as a research tool for improving predictions of relationships between soil and plant nitrogen (N) and crop yield. However, without a phosphorus (P) simulation option, the applicability of the DSSAT crop models in P-deficient environments is limited. In this study, a soil-plant P model integrated to DSSAT was described, and results showing the ability of the model to mimic wide differences in maize responses to P in Ghana are presented as preliminary attempts to testing the model on highly weathered soils. The model simulates P transformations between soil inorganic labile, active and stable pools and soil organic microbial and stable pools. Plant growth is limited by P between two concentration thresholds that are species-specific optimum and minimum concentrations of P defined at different stages of plant growth. Phosphorus stress factors are computed to reduce photosynthesis, dry matter accumulation and dry matter partitioning. Testing on two highly weathered soils from Ghana over a wide range of N and P fertilizer application rates indicated that the P model achieved good predictability skill at one site (Kpeve) with a final grain yield root mean squared error (RMSE) of 535 kg ha−1and a final biomass RMSE of 507 kg ha−1. At the other site (Wa), the RMSE was 474 kg ha−1 for final grain yield and 1675 kg ha−1 for final biomass. A local sensitivity analysis indicated that under P-limiting conditions and no P fertilizer application, crop biomass, grain yield, and P uptake could be increased by over 0.10% due to organic P mineralization resulting from a 1% increase in organic carbon. It was also shown that the modeling philosophy that makes P in a root-free zone unavailable to plants resulted in a better agreement of simulated crop biomass and grain yield with field measurements. Because the complex soil P chemistry makes the availability of P to plants extremely variable, testing under a wider range of agro-ecological conditions is needed to complement the initial evaluation presented here, and extend the use of the DSSAT-P model to other P-deficient environments.  相似文献   

13.
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.  相似文献   

14.
《Ecological modelling》2005,181(4):567-580
The validity of the modifications in the source code of EPIC for simulation of crop development in semiarid conditions, described in de Barros et al. [de Barros, I., Williams, J.R., Gaiser, T. Modeling soil nutrient limitations to crop production in semiarid NE of Brazil with a modified EPIC version. I – Changes in the source code of the model. Ecol. Modell., submitted for publication] was tested against the results of 3 years, field experiment with nutrient omission using intercropping between maize and cowpea. The plant biomass production, grain yield, N, P, and K uptake by both crops were measured during the period of 1998–2000 and compared with simulated values. Reasonably good agreement and accuracy was obtained between the measured and simulated values for all evaluated parameters.Slight overestimation of grain yield by the simulations was attributed to high rates of floral abortion caused by dry spells during the flowering periods of 1998 and 1999, since this factor is not considered in the model yet. Improvements of the accuracy of the model may also be obtained by more comprehensive understanding of soil resource use by component plants in mixed cropping systems. Therefore, it is necessary to generate more knowledge about the partitioning of the resources by the crops before being incorporated into modeling approaches.The model was sensitive to climate variations and changes in soil chemical properties due to the application of fertilizers and/or lime under the tropical semiarid conditions of the NE of Brazil. Once calibrated and validated for different crops and soil types of this region, the model will be appropriate as tool for regional planning.  相似文献   

15.
Agricultural practices can lead to copper accumulation in soils and at high concentration it can become toxic for plants. One common toxic effect of copper on plants is a decrease of crop yield. Here, we studied 1) the crop yield of maize grown on plots of a soil intentionally enriched with copper sulphate and 2) the possible relationship between the copper concentration in chemical soil fractions and the maize crop yield. Anthropogenic copper is mainly bound to manganese oxides, to iron oxides and to the organic matter. Maize (Zea maize L.) was grown on outdoor experimental plots. The crop yield was evaluated for three development stages: the 6–10 leaf stage, the female flowering stage and the maturity stage, 2, 4 and 6 years after the soil copper enrichment. Strong crop yield reductions, proving a toxic effect of copper on maize growth were noted 2 years after the copper input at the maturity stage and 4 years after the copper input at the 6–10 leaf stage. Variations in maize crop yield are described with linear multiple regression equations including the variable copper content in soil, and other variables when needed such as soil pH, soil organic carbon level and the climatic variables, the precipitation rate and the ambient temperature. The crop yield study at the 6–10 leaf stage and at the female flowering stage does not provide significant regression equations, while the crop yield study at the maturity stage does. Request variables for the models are the total copper content or the copper bound to the organic matter and the meteorological data. Electronic Publication  相似文献   

16.
A new cropping system of corn mixed with grasses was tried to make full and efficient use of water and to ease environmental problems such as soil erosion by water and wind in grain and forage feed production practices. Field experiments were conducted to investigate the water use efficiency under this mixture cropping system. Six treatments with two replicates were arranged as: bare field, corn only, rye only, alfalfa only, rye–corn mixture and alfalfa–corn mixture. Lysimeters were used to measure different components of water consumption in the crop fields for water use efficiency estimation. From the yields and water consumption of crops under different treatments, combined water use efficiency of corn and grasses were estimated. The results showed that WUEs in the mixed cropping fields of corn–grasses were much higher than those in the fields where only corn or grass were grown. Averaged WUE was 3.71 kg/m3 from the corn and rye mixture fields, 30% higher than that from the plots where only corn or rye were grown. Averaged WUE was 4.55 kg/m3 from the alfalfa and corn mixture fields, 60% higher than that from the fields where only corn or alfalfa were grown. Under the same conditions of irrigation, yields from the rye and corn mixture plots increased by 33%, as compared with those from fields where only corn or rye were grown. The yields from alfalfa and corn mixture fields were 61% higher than those from fields where only corn or alfalfa were grown. The experimental results also indicated that corn and alfalfa mixture cropping is better than a corn–rye mixture system.  相似文献   

17.
SUMMARY

A rich diversity of traditional crops occurs generally in the Himalaya and more particularly in Central Himalaya. Over forty species of food grains are grown in traditional agroecosystems of Central Himalaya, which have been managed by the local farming communities since time immemorial. These traditional crop varieties have evolved over centuries and are well adapted to the particular area. A number of edaphic, topographic and climatic factors associated with different selection pressures over centuries of cultivation resulted in immense variations in the crop species.

The grain and by-product yield of the majority of the traditional crops cultivated across an altitudinal gradient were worked out and compared with common food crops (paddy, wheat, mustard) at two points in time (1970-74, 1990–94) and it was found that almost all the traditional crops had slightly higher yields during 1970–74 than between 1990–94. However, common food crops grown during the Kharif season had higher yields during 1990–94 whereas, Rabi season crops exhibited higher yield during 1970–74. The yield of rainfed paddy remained static over the years across the altitudinal gradient. Among the traditional crops cultivated during the Kharif and Rabi seasons in mixed and pure forms at different altitudes were Macrotyloma uniforum (at higher altitude), Parilla frutescens and Vigna mungo (at middle altitude) and Panicum miliaceum (at lower altitude) which were found to be eco-energetically efficient. Avena sativa (oat) and mixed cropping of Fagopyrum esculentum and potato had higher energy efficiency ratios whereas the latter also exhibited a higher monetary output/input ratio. Crops like paddy and wheat with mustard, grown in irrigated land were found to be more eco-energetically efficient than the same crops grown in the rainfed land. In general, traditional crops possess higher nutritive value than the common food crops. The contribution of traditional crops to the local diet (kg/capita/year) and their energy and protein equivalents were higher during both time periods. It was observed that while exporting these traditional crops, the locals of the region are highly exploited by middlemen. Despite having huge potential, traditional crop diversity of this region has been reduced to a great extent during the last two decades. Besides, the area under cultivation with these crops has been declining rapidly. However, many of these crops possess immense potential to meet the growing food demand and ensure food security of an increasing population. Therefore, a comprehensive programme of conservation through various means and improvement of agronomic yield in their natural habitats is urgently needed.  相似文献   

18.
Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.  相似文献   

19.
轮作休耕是实现"藏粮于地、藏粮于技"的重要途径之一,目前在太湖稻田区域主要推广紫云英(Astragalus sinicus L.)-水稻(Oryza sativa L.)、油菜(Brassica napus L.)-水稻和休耕-水稻典型轮作与休耕方式。在太湖地区典型稻田水稻生长季设置了6个处理:(1)紫云英-水稻轮作,不施N肥处理,MRN0;(2)紫云英-水稻轮作,当地常规施肥量(300 kg·hm-2,以纯氮计,下同),MRN300;(3)油菜-水稻轮作,不施N肥处理,RRN0;(4)油菜-水稻轮作,当地常规施肥量(300 kg·hm-2),RRN300;(5)休耕-水稻轮作,不施N肥处理,FRN0;(6)休耕-水稻轮作,当地常规施肥量(300 kg·hm-2),FRN300。通过田间试验,研究了不同轮作与休耕方式对水稻产量、氮肥利用率及稻田温室气体CH4和N2O排放的影响,从而为综合评价轮作休耕方式提供科学依据。田间试验结果显示,与不施氮肥处理相比,在不同轮作休耕方式下施氮300 kg·hm-2,可增加53.7%—60.0%的水稻产量,以MRN300处理水稻产量最高,与RRN300和FRN300处理相比,水稻产量分别提高了1.6%和6.0%。在不施氮水平下,MRN0、RRN0和FRN0各轮作处理间N2O排放通量和累积排放量均值差异不显著(P>0.05)。而在施氮300 kg·hm-2下,紫云英-水稻轮作可降低N2O排放通量和累积排放量,与RRN300和FRN300处理相比,N2O排放通量分别降低了36.0%(P<0.05)和2.1%(P>0.05)。在同一施氮水平下,紫云英-水稻轮作CH4排放通量和累积排放量最小,与RRN300和FRN300处理相比,MRN300处理CH4排放通量分别降低了1.1%和6.7%,CH4和N2O的全球增温潜势(GWP)分别降低了3.3%和6.5%,单位水稻产量温室气体排放强度(GHGI)分别降低了4.6%和11.6%。综上,紫云英-水稻轮作对提高水稻产量,降低温室气体排放效果最好。  相似文献   

20.
Midwest U.S. landscape change to 2020 driven by biofuel mandates   总被引:1,自引:0,他引:1  
Meeting future biofuel targets set by the 2007 Energy Independence and Security Act (EISA) will require a substantial increase in production of corn. The Midwest, which has the highest overall crop production capacity, is likely to bear the brunt of the biofuel-driven changes. In this paper, we set forth a method for developing a possible future landscape and evaluate changes in practices and production between base year (BY) 2001 and biofuel target (BT) 2020. In our BT 2020 Midwest landscape, a total of 25 million acres (1 acre = 0.40 ha) of farmland was converted from rotational cropping to continuous corn. Several states across the Midwest had watersheds where continuous corn planting increased by more than 50%. The output from the Center for Agriculture and Rural Development (CARD) econometric model predicted that corn grain production would double. In our study we were able to get within 2% of this expected corn production. The greatest increases in corn production were in the Corn Belt as a result of conversion to continuous corn planting. In addition to changes to cropping practices as a result of biofuel initiatives we also found that urban growth would result in a loss of over 7 million acres of productive farmland by 2020. We demonstrate a method which successfully combines economic model output with gridded land cover data to create a spatially explicit detailed classification of the landscape across the Midwest. Understanding where changes are likely to take place on the landscape will enable the evaluation of trade-offs between economic benefits and ecosystem services allowing proactive conservation and sustainable production for human well-being into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号