首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Č. Lucu 《Marine Biology》1973,18(2):140-145
Influence of calcium on sodium fluxes was investigated in the brackish-water crab Carcinus mediterraneus Csrn., after activation of sodium regulatory mechanisms, during longterm acclimation in diluted (15.9 S) sea water. The 22Na outflux constants measured in whole crabs are noticeably lower (0.188 to 0.374h-1) in diluted sea water enriched by calcium (5.8 to 10.4 mM Ca2+/l), than in ordinary diluted sea water (0.545 h-1). The sodium-outflux constants in hemolymph, gills and muscle show the same trend of slower exchange of 22Na in calcium-enriched sea water. In ordinary sea water, the total sodium-outflux rate from the hemolymph amounts to 46.31 M Na/g/h, while in calcium-enriched sea water (8.23 mM Ca2+/l) it is inhibited, amounting to 13.86 M Na/g/h. Sodium and potassium concentrations of intracellular muscles in diluted sea water enriched with calcium and control diluted sea water are similar. The outflux of intracellular sodium from the muscle amounts to 2.84 M Na/g/h in crabs acclimated to diluted sea water.  相似文献   

2.
Pyjama sharks (Poroderma africanum) were exposed to a wide range of salinities, over which blood serum was analysed for osmolarity, chloride and urea concentrations. Fish were divided into two groups, those fed twice weekly (high intake), and those fed once a month (low intake). Both groups were exposed to the same salinity range. High intake fish showed the characteristic elasmobranch osmolarity picture, with serum values slightly hyper-osmotic at all times. Low intake fish, however, showed a degree of hypo-osmotic regulation. Serum values for both groups overlapped at very low salinities. Serum urea was also affected by diet, so that again two distinct sets of values were produced, again with overlap at the lower salinities. When previously well-fed fish were starved over a period of one month, serum urea and osmolarity decreased simultaneously. Consequently, it is felt that serum osmolarity is directly related to serum urea levels. Serum chloride was not found to be affected by diet, both groups showing the same change in blood values when exposed to the same change in salinity. It is shown, however, that a reduction in food intake, over a period of more than a fortnight, can reduce metabolic urea to the extent of depressing serum osmolarity and, hence, shift the ionic and osmotic equilibrium between the fish and the sea water. This may result in varying degrees of hypoosmotic regulation.  相似文献   

3.
In two spatially isolated species — North Sea Carcinus maenas L. and Adriatic Carcinus mediterraneus Czerniavsky —osmoconcentration in hemolymph and Na-transport were investigated. The experiments were performed on crabs which had been long-term acclimated to sea water (1190 mOsmol/l) and to 50% sea water, and on individuals immediately after transfer from sea water to 50% sea water, until new steadystate conditions had been reached. About 10 to 12 h after transfer, a new steady state of total osmoconcentration as well as of the concentrations of the most representative cations Na, K, Ca, and Mg was attained. The hemolymph contents of Na and total osmotically active substances of the North and Adriatic Sea populations are significantly different when they are long-term acclimated to sea water and to 50% sea water. Total sodium fluxes, as calculated from influx and outflux experiments, are in the range 12.1 to 15.2 M Na/g/h in both species when acclimated to sea water. In 50% sea water, sodium fluxes are retarded, especially in C. maenas (6.6 M Na/g/h). This value is significantly lower than the corresponding value in C. mediterraneus (11.4 M Na/g/h). Differences are discussed on the basis of adaptation of the populations to their different environments.  相似文献   

4.
Grass shrimp, Palaemonetes pugio, were capable of hypo- and hyper-osmotic regulation of body fluids. Hemolymph chloride and osmotic concentrations were maintained at relatively stable levels over a wide salinity range. Following an abrupt transfer from intermediate (14 and 17) to high (31 and 35) or low (1 and 2) salinities, hemolymph chloride levels exhibited initial overshoot and undershoot, respectively, of new steady-state levels. Osmotic concentrations exhibited an initial undershoot at low, but not overshoot at high salinity. Chloride space in salinity-acclimated shrimp was relatively stable at salinities from 1 to 35. Changes in chloride space following salinity transfer paralleled those of hemolymph chloride levels, and are discussed in the light of alterations in intracellular sodium concentrations reported earlier. Rate constants for chloride turnover indicated independent exchanges of sodium and chloride ions. Water-turnover measurements showed that permeability of P. pugio was greatest at the isosmotic salinity (17) and reduced at salinities which were associated with active osmoregulation. Exposure to sublethal and 96-h LC50 levels of Aroclor® 1254 did not seriously alter hemolymph chloride and osmotic concentrations, chloride space or chloride-exchange kinetics in adult shrimp. Disruption of hemolymph chloride regulation in juvenile shrimp was associated with large mortalities not observed in adults. Shrimp exposed to Aroclor 1254 at 17 S exhibited reduced water permeability similar to levels previously observed in controls at high and low salinities in response to osmotic or ionic gradients. Exposure to PCBs did not result in further reduction in permeability at the latter salinities.  相似文献   

5.
The crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta were exposed for 40 d to uranium (1.5 to 10 mg l-1) in continuous-flow sea water in separate starved and fed treatments, and the kinetics of uranium bioaccumulation were estimated from an exponential model. Starved and fed crabs took up U at a similar rate, which suggests that sea water was the major source of U to the crab; the fed crabs excreted U more rapidly than the starved crabs and this led to a lower net uptake of U by fed crabs. Fed and starved winkles took up U at similar rates and excreted it at similar rates, so the sea water was also the major source of U to winkles. Crabs took up more U than winkles; the concentration factors were 7 to 18 and 4, respectively. Uranium turnover was quite slow for both species (11 to 36 d) as it was also for winkle shells (6 d); this suggests that the rate-limiting processes which control turnover are biological (e.g. growth or tissue replacement) or physical (e.g. diffusion into the shell) rather than chemical (e.g. precipitation, adsorption or exchange). There was no effect of increasing U concentration in water on the U kinetic parameters.  相似文献   

6.
The myosin ATPase activity of the flexor muscle of an estuarine crab, Scylla serrata, was studied in relation to salinity adaptation. The enzyme is activated more by calcium than by magnesium; it exhibits maximum activity at pH 9.0, and substrate inhibition above 0.5 mM ATP. The enzyme activity increases in crabs adapted to higher salinities. The enzyme from normal (70% sea water) crabs shows two pH optima; one at pH 7.0, the other at pH 9.0. The neutral optimum shifts to pH 6.0 upon adaptation to full strength sea water, but disappears upon adaptation to 25% sea water. The enzyme from normal crabs shows an optimum at 30 °C; adaptation to full strength sea water raises this optimum to 38 °C, whereas adaptation to 25% sea water decreases it to 24 °C. These changes are discussed in relation to estuarine conditions.  相似文献   

7.
Moulder  Shelagh M. 《Marine Biology》1980,59(4):193-200
The possible interactive effect of the chlorides of copper and mercury on the euryhaline amphipod Gammarus duebeni in 100% sea water was examined using the following indices: (i) 96 h LC50 values, (ii) urine production rates and (iii) degree of mercury accumulation. Both (a) the interaction of the chlorides of mercury and copper together in solution and (b) the influence of cupric chloride pre-treatment of individuals prior to exposure to mercuric chloride were investigated. Presence of a sublethal level of cupric chloride protected G. duebeni against the toxic action of mercuric chloride. Cupric chloride pretreatment was not so effective. The nature of the interaction between mercury and copper is discussed.  相似文献   

8.
In distilled water, marine benthic algae immediately lose ions. This can be demonstrated by means of chloride titration or conductivity measurements. The rapidity and the complete reversibility of this process show that ion movements out of and into the free space are involved. When Laminaria saccharina thalli, exposed to a series of increasing NaCl-concentrations, are subsequently transferred into distilled water, the external concentration increases proportionally to rate of ion loss. Through its free space, the alga establishes an ionic equilibrium with its external medium. If the alga thallus is killed (20 sec boiling in isosmotic sea water), the extent of chloride loss is much higher. Because of thermal destruction of the osmotic space, the chloride can then escape from the entirc thallus. Since sublittoral algae die upon drying, chloride loss from dry thalli is much higher than that from wet thalli: this difference is small in littoral algae, which tolerate short periods of dryness. A close relationship exists between extent of chloride loss and degree of resistance to drying.  相似文献   

9.
Transbranchial potentials (TP) and sodium or chloride fluxes were measured in an apparatus designed for the simultaneous perfusion of eight isolated gills of Uca rapax. In anterior gills perfused with U. rapax–saline (US) the TP varied almost linearly from-7.5 to +10 mV inside, and in posterior gills from +2 to-8.5 mV (inside), on exposure to salinities ranging from 8.7 through 52, i.e. 25 to 150% seawater (100%=34.6 S). Sodium influx and efflux in anterior gills exposed to US, 8.7 or 43.3 S (0.7 to 4.0 mmol h–1 g–1 dry wt) were always greater than in posterior gills (0.5 mmol h–1). The chloride fluxes were slightly smaller than sodium fluxes in anterior gills, while in the posterior gills the chloride influx (2.8 to 4.6 mmol h–1) was always larger than chloride efflux (0.6 to 1.1 mmol h–1) or the sodium fluxes. At least three ion-transport mechanisms may be present in these gills: (1) an internal ( = basolateral), ouabain-sensitive Na+, K+ pump, restricted to anterior gills; (2) a furosemide-sensitive Na+, K+, 2Cl (plus water) transporter, apparently restricted to posterior gills, and (3) a Na+ exchanger (and possibly other as yet unidentified ion transporters, as suggested by large increases of the chloride influxes caused by amiloride), probably located on the apical membranes of the epithelial cells of both gill types. The differential selectivity of the gills of U. rapax for sodium or chloride may limit the transbranchial movements of either ion, without a reduction of the overall permeability of these crabs.Communicated by N.H. Marcus, Tallahassee  相似文献   

10.
Rates of microheterotrophic utilization (incorporation+respiration) of 3H-leucine and 3H-glutamic acid were measured in seawater surface films from oligotrophic, eutrophic and mesotrophic waters incubated in situ off Baja California in July 1981 and off Southern California in November 1982. Neither visible nor ultraviolet radiation had a marked detrimental effect on microbial heterotrophy, although solar radiation sometimes appeared to be stimulatory. Film microheterotrophs utilized glutamic acid at rates between 0.07 and 0.13 nM h-1 for oligotrophic waters and between 0.43 and 2.1 nM h-1 for eutrophic waters; the respective turnover times ranged between 101 and 313 h and between 8.6 and 21.5 h. Film microheterotrophs from oligotrophic waters utilized leucine at rates comparable to those observed for glutamic acid, but turnover times were shorter. Leucine metabolism rates of film microheterotrophs in eutrophic waters were slower than glutamic acid rates, but turnover times were similar. Naturally varying amino acid concentrations accounted, in part, for differences in turnover times. In oligotrophic waters, higher utilization rates were observed for surface-film microheterotrophs than for subsurface (10 cm) microheterotrophs, whereas in eutrophic waters, utilization rates were similar for surface-film microheterotrophs and subsurface microheterotrophs. Surface-film microheterotrophs, in most cases, had an average of 63% amino acid carbon assimilation efficiency, similar to euphotic-zone heterotrophs. Surface-film microheterotrophs are actively involved in the metabolism and turnover of amino acids.  相似文献   

11.
Accumulation of the bi-cyclic aromatic hydrocarbon 14C-1-naphthalene in adult female Calanus helgolandicus Claus and adult female Eurytemora affinis Poppe in sea water concentrations of hydrocarbon ranging from 0.2 to 992 g/l was studied during exposure periods of up to 15 days as part of an investigation of the possible effects on marine zooplankton of persistent exposure to low levels of petroleum hydrocarbons. With both species the body levels of radioactivity increased rapidly during the first few days of the exposure period, but after exposure for 7 to 8 days to sea water containing 50 g hydrocarbon/l an equilibrium condition was approached; in some experiments where E. affinis was exposed to 1.0 and 10 g hydrocarbon/l for 15 days there was no further increase in body levels of radioactivity after 7 to 8 days. Using a low concentration of hydrocarbon (1 g/l), the quantity of radioactivity accumulated after 10 days was found to be nearly fifty times greater in the smaller species, E. affinis, than in C. helgolandicus, when expressed in terms of body weight. After they had been exposed to the hydrocarbon for several days the copepods contained a considerable proportion of radioactivity that was no longer identifiable as naphthalene and was presumably present as metabolites. Radioactivity accumulated in the copepods after several days was rapidly lost after they were transferred to uncontaminated sea water: e.g. C. helgolandicus lost nearly 90% of its body level of radioactivity in 24 h. Thereafter the rate of loss was greatly reduced, and 5% of the original body level of radioactivity still remained in the copepods at the end of 11 days. Experiments on the breakdown of naphthalene added at low concentrations to sea water samples containing natural microbial populations indicated degradation rates of 0.1 to 0.2 g/l/24 h in oceanic water, and 2.6 g/l/24 h in inshore water samples. The results are discussed in terms of the possible transfer of hydrocarbon to a higher trophic level in areas subjected to constant low-level inputs of petroleum hydrocarbons.  相似文献   

12.
The in situ decomposition rate of urea was measured using 14C-labelled urea at 3 areas in the North Pacific Ocean: Sagami Bay on the southern coast of central Japan, the northwestern Pacific central waters and the subarctic Pacific waters. The mean values of the decomposition rates of urea in surface waters of these areas were 44.5, 1.51 and 1.32 mol urea m-3 d-1, respectively. These rates decreased with depth. High rates of urea carbon incorporation into particulate matter and the CO2 liberation from urea carbon into seawater were obtained in light bottles in the euphotic zone, while low rates were found in dark bottles. The turnover rates of urea in the 3 areas were calculated respectively as 12, 113 and 110 d at the surface, and the values increased with depth.  相似文献   

13.
The present investigation examined the detoxifying potential of methanolic herbal extracts, namely the leaf and bark extract of Eucalyptus tereticornis, bark extract of Saraca asoca, Cassia fistula and Withania somnifera in vitro using primary chicken embryo fibroblast (CEF) cells against damaging effects of urea and mercuric chloride (HgCl) (II). The influence of 20?mM urea and 10?µM?HgCl (II) was determined on cell viability or proliferation of cells after treatment with plant extracts. Higher survival rate of primary CEF cells treated with higher concentrations of plant extracts was observed due to their protective ability against urea and HgCl (II). Cassia fistula bark extract (10?mg?mL?1) was found to be most effective against 20?mM urea as it protects 90% of CEF cells whereas W. somnifera protects 86% of the cells within 24?h. After treating cells with10?µM HgCl, W. somnifera and E. tereticornis leaf extracts were found to be more effective among all other extracts as they protect approximately 86% and 70% of CEF cells, respectively, within 24?h. These results indicate that C. fistula and W. somnifera has the highest potential amongst all the five plant extracts for protecting CEF cells against damaging effects of urea and HgCl (II), respectively.  相似文献   

14.
Effects of varying the amplitude and duration of tidal fluctuations of salinity upon the hemolymph osmotic and ionic composition of the southern oyster drill Thais haemastoma were studied. The composition of diluent was varied during one experiment to approximate Mississippi River water. Snails were also subjected to a diurnal 20-10-20%. S fluctuation pattern for two weeks and hemolymph was collected twice daily. Amplitude of hemolymph osmolality and ion fluctuation during tidal fluctuations of salinity was directly related to the amplitude of ambient salinity fluctuation and inversely related to the rate of fluctuation. The rate of hemolymph osmolality and ion change was directly related to the rate of ambient salinity change. Dilution of seawater with simulated river water instead of deionized water resulted in a reduced amplitude of fluctuation of hemolymph osmolality and ion concentration. Most of the hemolymph osmolality fluctuation was due to solute movement and not to shifts in body water. Hemolymph, sodium and chloride level changed in a similar manner throughout all of the experiments except the 10-5-10% S-simulated river-water experiment in which chloride changed much less than sodium. Hemolymph ninhydrinpositive substance (NPS) levels cycled inversely with ambient salinity during the 30-10-30%. and 20-10-20%. S diurnal and the 30-10-30%. S semidiurnal experiments, but did not change during the 10-5-10%. S deionized water or simulated river-water experiment. Snails fed for most of the 2-week 20-10-2%. S diurnal cycle fluctuation experiment and no mortality occurred. Drills were hyperosmotic to the ambient water at all but two sampling periods, when they were isosmotic. Hemolymph NPS levels tended to be higher during low-salinity slack water than during high-salinity slack water. Even small fluctuations of ambient salinity result in fluctuations of hemolymph osmolality and ionic composition which may affect rate functions within the zone of capacity adaptation of the southern oyster drill.  相似文献   

15.
Participatory turnover time is defined as the time required to cycle an element in a system through a given material in that system. The participatory turnover time of ionic zinc by the adult Meganyctiphanes norvegica population in the Ligurian Sea ranged between 498 and 1243 years, depending upon the available food supply, and considering the food chain as the only route for zinc accumulation by the population. A total-impact turnover time was calculated as the sum of the participatory turnover time for live individuals plus the time required for dead euphausiids to lose 90% of their zinc to the water. Carcasses lost zinc to the water slower than either feces or molts, and so established the maximum loss time for all particulate excretion products; nevertheless, total-impact turnover time for zinc did not differ significantly from the participatory turnover time. The net vertical transport of zinc by M. norvegica from the sea surface to any specified depth can be calculated as the sum of the dissolved zinc excreted below the depth plus the concentrations of zinc left in feces, molts, and carcasses after they have sunk to the specified depth. Carcasses sink the fastest and lose the smallest fraction of their zinc concentration during descent; fecal pellets sink the slowest and lose the greatest fraction of their zinc concentration, and molts are intermediate. Nevertheless, feces represents the major route for delivering zinc to the bottom of the Ligurian Sea (2500 m), because concentration of the element in the pellets is so much higher than in carcasses or molts. Excretion of dissolved zinc into the water at the vertical migration depth of the living population during daylight hours was also inconsequential. Feces zinc represented over 80% of the total zinc transported to the sea floor if only marginal food supplies were available to the euphausiids, and over 90% if food was in sufficient supply. M. norvegica can effect a net transport of about 98% of its body zinc concentration below 500 m daily, in conditions of sufficient food supply and assuming that no released products are eaten during descent. If the food supply in the Ligurian Sea is considered only marginal throughout the year, M. norvegica can still effect a daily net transport below 500 m of about 36% of its body concentration, and about 6% of its body concentration will reach 2500 m daily.  相似文献   

16.
Seasonal patterns of growth, reproduction, and productivity of Codium fragile spp. tomentosoides (van Goor) Silva were monitored at 3 locations in Rhode Island. Maximal growth occurred during the summer and was more significantly correlated with temperature than any other factor measured in this study. Multiple correlation models suggested an interaction between temperature, irradiance, and available nitrogen. Maximal reproduction occurred in late summer and early fall. The maximal productivity, based on harvested quadrats, was 2. 10 g dry weight m-2 day-1. A large amount (up to 87.3%) of the annual production entered the detrital food chain during the winter by fragmentation of the thallus. Culture studies examined the effects of temperature (6° to 30°C), irradiance (7 to 140 E m-2 sec-1), daylength (8 h light: 16 h dark to 24 h light: O h dark) and salinity (6 to 48) on growth. Differentiated thalli grew over a broad range of experimental conditions, with maximal growth at 24°C, 24 to 30 S, a minimal irradiance of 28 E m-2 sec-1, and 16 h daylength. The effect of increasing daylength was due to increased total daily irradiance rather than to a true photoperiodic effect. Undifferentiated sporelings survived and grew in a narrower range of environmental conditions than thalli. c. fragile spp. tomentosoides grew equally well with nitrate, nitrite, ammonium, and urea as a nitrogen source. The addition of NaHCO3 stimulated growth at levels of 2.4 to 4.8 mM, suggesting an inorganic carbon limitation in static cultures. This study supports the hypothesis that the in situ seasonal growth pattern of c. fragile spp. tomentosoides is primarily due to the interaction of temperature and irradiance.  相似文献   

17.
Notwithstanding the great importance of the salinity factor in the marine environment, the knowledge of influence of salinity on growth of marine benthic algae is very limited. Rate of growth (mg, cm2) and O2 output of the intertidal red algaPorphyra umbilicalis from Helgoland, North Sea, were measured during a 3 week culture in 3 different salinities (1/2-, 1- and 2-concentrated artificial sea water; Table 1). Under hypertonic conditions (2-concentrated sea water) growth rate and photosynthesis rate were depressed, compared to values obtained in normal concentrated sea water. Under hypotonic conditions (1/2-concentrated sea water), growth expressed in mg was the same as in normal concentrated sea water, or higher when expressed in cm3. Rate of O2 output was almost unaltered in one of the two experiments, lowered in the other. Cell size increased at higher salinity, while swelling of cell walls and intercellular substances as well as the intensity of colouring decreased with salinity. The discrepancies between growth and photosynthesis under hypotonic conditions cannot be completely explained by the observed influences of salinity on morphological structures (cell size, swelling of cell substances). Detailed studies on the time course of photosynthesis and respiration rates, and preparation of a metabolic balance for the algae are necessary.  相似文献   

18.
The phosphorus metabolism of Pyrocystis noctiluca Murray (Schuett) 1886 has characteristics which may enhance its potential for success in orthophosphate impoverished waters. The steady-state phosphate uptake rates were equal in the light and dark, and were directly proportional to both the phosphorus cell quota and the cell division rate. In contrast, nutrient-saturated uptake rates were multiphasic, faster in the light than the dark, 2 to 4 orders of magnitude greater than steady-state rates, and were inversely proportional to both the phosphorus cell quota and the cell division rate. These uptake characteristics suggest that P. noctiluca may take up phosphate coincidently at their typically low ambient concentrations as well as to exploit episodic nutrient events in nature. Cell division rates were a hyperbolic function of the ambient orthophosphate concentration. The shortest doubling time was 8.7 d, the phosphate concentration at half the maximum division rate was 0.15 M and the threshold, concentration for cell division was ca 0.05 M PO 4 3- . Division rates of P. noctiluca in the ocean are much faster than predicted from the measured ambient orthophosphate concentrations. Since this dinoflagellate has high naturally occurring alkaline phosphatase activities, and can utilize organic-P compounds, we suggest that organic-P can be as important as orthophosphate in supporting the observed division rates of P. noctiluca in the sea.  相似文献   

19.
The influence of certain environmental factors on the flux of selenium through marine biota has been studied, using Mytilus galloprovincialis and Lysmata seticaudata as test organisms of commercial interest. Over a selenium concentration range in sea water spanning 3 orders of magnitude, bioaccumulation of selenium by mussels was strongly dependent upon the ambient selenium concentration in sea water. Mussels accumulated Se (+4) to a much greater extent than Se (+6) and bioaccumulation was dependent upon temperature and mussel size. The presence of varying amounts of mercury did not significantly alter selenium uptake kinetics in mussels. Shrimp accumulated selenium to a lesser degree than mussels, the difference in concentration factors being due to the large amount of sorbed isotope lost with shrimp molts. Once incorporated, selenium was lost more rapidly from shrimp than from mussels. Temperature influenced selenium loss from mussels but did not alter the elimination rate in shrimp. Neither the chemical form of selenium nor mercury concentration in the organism affected loss of selenium from mussels. Elimination of selenium from shrimp was dependent upon the route of uptake; more rapid loss was noted from individuals which had absorbed the isotope directly from water than from those which had accumulated selenium via the food chain. In general, long-term selenium turnover rates were quite similar for both species; biological half-times ranged from 58 to 60 days for shrimp and 63 to 81 days for mussels. In the case of mussels, turnover rates measured in animals maintained in the laboratory differed somewhat from those determined from individuals held in field enclosures. Observed variations in flux rate may have been due to differences in food availability in the two experimental systems.Based on a communication given at the International Symposium on Interaction Between Water and Living Matter, Odessa, USSR, 6–10 October, 1975.  相似文献   

20.
The fluoride concentration in ground water was determined in ten villages of Rohtak district of Haryana state (India). The fluoride concentration in the underground water of these villages varied from 0.034-2.09 mg/l. Various other water quality parameters, viz., pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate were also measured. A systematic calculation of correlation coefficients among different physicochemical parameters indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. Overall water quality was found unsatisfactory for drinking purposes. Fluoride content was higher than permissible limit in 50% samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号