首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
In queen-right honeybee colonies workers detect and eat the vast majority of worker-laid eggs, a behaviour known as worker policing. However, if a colony becomes permanently queen-less then up to 25% of the worker population develops their ovaries and lay eggs, which are normally reared into a final batch of males. Ovary development in workers is accompanied by changes in the chemical secretion of the Dufour's gland with the production of queen-like esters. We show that ester production increases with the period that the colony is queen-less. The increased ester production also corresponds to an increase in persistence of worker-laid eggs in queen-right colonies, since the esters somehow mask the eggs true identity. However, in a rare queen-less colony phenotype, workers always eat eggs indiscriminately. We found that the egg-laying workers in these colonies were unusual in that they were unable to produce esters. This apparently maladaptive egg eating behaviour is also seen in queen-less colonies prior to the appearance of egg-laying workers, a period when esters are also absent. However, the indiscriminate egg eating behaviour stops with the appearance of ester-producing egg-laying workers. These observations suggest that esters are providing some contextual information, which affects the egg eating behaviour of the workers.  相似文献   

2.
 A fundamental requirement of task regulation in social groups is that it must allow colony flexibility. We tested assumptions of three task regulation models for how honeybee colonies respond to graded changes in need for a specific task, pollen foraging. We gradually changed colony pollen stores and measured behavioral and genotypic changes in the foraging population. Colonies did not respond in a graded manner, but in six of seven cases showed a stepwise change in foraging activity as pollen storage levels moved beyond a set point. Changes in colony performance resulted from changes in recruitment of new foragers to pollen collection, rather than from changes in individual foraging effort. Where we were able to track genotypic variation, increases in pollen foraging were accompanied by a corresponding increase in the genotypic diversity of pollen foragers. Our data support previous findings that genotypic variation plays an important role in task regulation. However, the stepwise change in colony behavior suggests that colony foraging flexibility is best explained by an integrated model incorporating genotypic variation in task choice, but in which colony response is amplified by social interactions. Received: 17 October 1998 / Received in revised form: 11 March 1999 / Accepted: 12 March 1999  相似文献   

3.
Social parasites exploit their host’s communication system to usurp resources and reproduce. In the honeybee, Apis mellifera, worker reproduction is regulated by pheromones produced by the queen and the brood. Workers usually reproduce when the queen is removed and young brood is absent. However, Cape honeybee workers, Apis mellifera capensis, are facultative intraspecific social parasites and can take over reproduction from the host queen. Investigating the manner in which parasitic workers compete with host queens pheromonally can help us to understand how such parasitism can evolve and how reproductive division of labour is regulated. In A. m. capensis, worker reproduction is associated with the production of queen-like pheromones. Using pheromonal contest experiments, we show that Apis mellifera scutellata queens do not prevent the production of queen-like mandibular gland compounds by the parasites. Given the importance of these pheromones in acquiring reproductive status, our data suggest that the single invasive lineage of parasitic workers occurring in the range of A. m. scutellata was selected for its superior ability to produce these signals despite the presence of a queen. Such resistance was indeed less frequent amongst other potentially parasitic lineages. Resistance to reproductive regulation by host queens is probably the key factor that facilitates the evolution of social parasitism by A. m. capensis workers. It constitutes a mechanism that allows workers to evade reproductive division of labour and to follow an alternative reproductive option by acquiring direct fitness in foreign colonies instead of inclusive fitness in their natal nests.  相似文献   

4.
A honeybee queen normally mates with 10–20 drones, and reproductive conflicts may arise among a colony’s different worker patrilines, especially after a colony has lost its single queen and the workers commence egg laying. In this study, we employed microsatellite markers to study aspects of worker reproductive competition in two queenless Africanized honeybee colonies. First, we determined whether there was a bias among worker patrilines in their maternity of drones and, second, we asked whether this bias could be attributed to differences in the degree of ovary activation of workers. Third, we relate these behavioral and physiological factors to ontogenetic differences between workers with respect to ovariole number. Workers from each of three (colony A) and one (colony B) patrilineal genotypes represented less than 6% of the worker population, yet each produced at least 13% of the drones in a colony, and collectively they produced 73% of the drones. Workers representing these genotypes also had more developed follicles and a greater number of ovarioles per ovary. Across all workers, ovariole development and number were closely correlated. This suggests a strong effect of worker genotype on the development of the ovary already in the postembryonic stages and sets a precedent to adult fertility, so that “workers are not born equal”. We hypothesize a frequency-dependent or “rare patriline” advantage to queenless workers over the parentage of males and discuss the maintenance of genetic variance in the reproductive capacity of workers.Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
In anarchistic honey-bee colonies, many workers’ sons are reared despite the presence of the queen. Worker-laid eggs are normally eaten by other workers in queenright colonies. Workers are thought to discriminate between queen-laid and worker-laid eggs by the presence or absence of a queen-produced egg-marking pheromone. This study compared the survival of three classes of eggs (worker-laid eggs from anarchistic colonies, worker-laid eggs from non-anarchistic queenless colonies, and queen-laid eggs) in both queenright normal colonies and queenright anarchistic colonies, in order to test the hypothesis that anarchistic workers evade policing by laying more acceptable eggs. As expected, few worker-laid eggs from non-anarchistic colonies survived more than 2 h. In contrast, worker-laid eggs from anarchistic colonies had much greater acceptability, which in some trials equalled the acceptability of queen-laid eggs. Anarchistic colonies were generally less discriminatory than normal queenright colonies towards worker-laid eggs, whether these originated from anarchistic colonies or normal queenless colonies. This indicates that the egg-removal aspect of the anarchistic syndrome involves both worker laying of eggs with greater acceptability and reduced discriminatory behaviour of policing workers. Received: 19 July 1999 / Received in revised form: 3 November 1999 / Accepted: 20 November 1999  相似文献   

6.
转Bt-cry1Ac棉花花粉对意大利蜜蜂生长发育的影响   总被引:3,自引:1,他引:3  
研究了取食转Bt-cry1Ac棉花花粉对意大利蜜蜂的影响,主要包括意大利蜜蜂的生长发育、体内酶活性的变化.结果发现,取食转Bt-cry1Ac基因棉花花粉的意大利蜜蜂与取食非转基因亲本棉花花粉的蜜蜂(CK)相比,4、5、6日龄幼虫体重差异不显著,幼虫及蛹的历期也没有明显差异.取食转Bt-cry1Ac基因棉花花粉的意大利蜜蜂6日龄幼虫体内的谷胱甘肽-S-转移酶、总蛋白酶活力与CK相比,没有显著差异.取食转Bt-cry1Ac基因棉花花粉的意大利蜜蜂幼虫体内的α-乙酸萘酯酶、乙酰胆碱酯酶活力极显著高于CK,强碱性、弱碱性类胰蛋白酶活力极显著低于CK,类胰凝乳蛋白酶活力显著低于CK.另外,采用酶联免疫(ELISA)方法在取食转Bt-cry1Ac基因棉花花粉的蜜蜂6日龄幼虫体内能够检测到Bt杀虫蛋白.表4参12  相似文献   

7.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

8.
In most social insect colonies, workers do not attempt to lay eggs in the presence of a queen. However, in the honey bee (Apis mellifera), a rare phenotype occurs in which workers activate their ovaries and lay large numbers of male eggs despite the presence of a fecund queen. We examined the proximate mechanisms by which this ‘anarchistic’ behaviour is expressed. We tested the effects of brood and queen pheromones on retinue attraction and worker ovary activation using caged worker bees. We found no difference between the anarchistic and wild type queen pheromones in the retinue response elicited in either wild type or anarchistic workers. Further, we found that anarchistic queens produce a pheromone blend that is as effective at inhibiting ovary activation as the wild type queen pheromone. However, anarchistic workers are less inhibited by queen pheromones than their wild type counterparts, in a dose-dependent manner. These results show that the anarchistic phenomenon is not due to changes in the production of queen pheromones, but rather is due in part to a shift in the worker response to these queen-produced signals. In addition, we demonstrate the dose-dependent nature of the effect of queen pheromones on honey bee worker ovary activation.  相似文献   

9.
Conspicuous secondary sexual traits may have evolved as handicap-revealing signals or as badges of status. We present results of an experiment using males of the sexually dimorphic house sparrow (Passer domesticus), that support the idea that the male-specific bib can be both a handicap-revealing signal and a reliable badge indicating the physical condition of the bird. In a test of the immunocompetence handicap hypothesis, wild-caught adult male house sparrows were studied in captivity. Birds implanted with elevated doses of testosterone were more dominant, had higher circulating levels of both testosterone and corticosterone and they also harboured relatively larger ectoparasite loads. Higher parasite loads were also associated with individuals showing lower immunocompetence and larger changes in bib size. A new model for immunocompetence effects in sexual selection is introduced, integrating actions that the hypothalamopituitary axis exerts on gonads, adrenals and the thyroid gland. The ”integrated immunocompetence model” synthesizes both the ”handicap” (i.e. survival-decreasing) and ”badge of status” (i.e. survival- enhancing) models for evolution of secondary sexual traits. Received: 15 May 1999 / Received in revised form: 2 November 1999 / Accepted: 6 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号