首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Rapid movement of agricultural chemicals through soil to groundwater via preferential flow pathways is one cause of water contamination. Previous studies have shown that time domain reflectometry (TDR) could be used to characterize solute transport in soil. However, previous studies have only scarcely addressed preferential flow. This study presents an extended application of TDR for determining preferential flow properties. A TDR method was tested in carefully controlled laboratory experiments using 20-cm long and 12-cm diameter undisturbed, structured soil columns. The method used a vertically installed TDR probe and a short pulse of tracer application to obtain residual mass (RM) breakthrough curves (BTC). The RM BTC obtained from TDR were used to estimate mobile/immobile model (MIM) parameters that were compared to the parameter estimates from effluent data. A conventional inverse curve fitting method (CXTFIT) was used to estimate parameters. The TDR-determined parameters were then used to generate calculated effluent BTC for comparison with observed effluent BTC for the same soil columns. Time moments of the calculated and observed BTC were calculated to quantitatively evaluate the calculated BTC. Overall, the RM BTC obtained from TDR were similar to the RM BTC obtained from effluent data. The TDR-determined parameters corresponded well to the parameters obtained from the effluent data, although they were not within the 95% confidence intervals. Correlation coefficients between the parameters obtained from TDR and from effluent data for the immobile water fraction (theta im/theta), mass exchange coefficient (alpha), and dispersion coefficient (Dm) were 0.95, 0.95, and 0.99, respectively. For three of the four soil cores, theta im/theta ranged from 0.42 to 0.82, indicating considerable preferential flow. The TDR-calculated effluent BTC also were similar to the observed effluent BTC having an average coefficient of determination of 0.94. Time moments obtained from calculated BTC were representative of those obtained from observed BTC. The vertical TDR probe method was simple and minimally destructive and provided representative preferential flow properties that enabled the characterization of solute transport in soil.  相似文献   

4.
This study presents a new method to visualise forced-gradient tracer tests in 2-D using a laboratory-scale aquifer physical model. Experiments were designed to investigate the volume of aquifer sampled in vertical dipole flow tracer tests (DFTT) and push-pull tests (PPT), using a miniature monitoring well and straddle packer arrangement equipped with solute injection and recovery chambers. These tests have previously been used to estimate bulk aquifer hydraulic and transport properties for the evaluation of natural attenuation and other remediation approaches. Experiments were performed in a silica glass bead-filled box, using a fluorescent tracer (fluorescein) to deduce conservative solute transport paths. Digital images of fluorescein transport were captured under ultraviolet light and processed to analyse tracer plume geometry and obtain point-concentration breakthrough histories. Inorganic anion mixtures were also used to obtain conventional tracer breakthrough histories. Concentration data from the conservative tracer breakthrough curves was compared with the digital images and a well characterised numerical model. The results show that the peak tracer breakthrough response in dipole flow tracer tests samples a zone of aquifer close to the well screen, while the sampling volume of push-pull tests is limited by the length of the straddle packers used. The effective sampling volume of these single well forced-gradient tests in isotropic conditions can be estimated with simple equations. The experimental approach offers the opportunity to evaluate under controlled conditions the theoretical basis, design and performance of DFTTs and PPTs in porous media in relation to measured flow and transport properties.  相似文献   

5.
Soil macropore networks establish a dual-domain transport scenario in which water and solutes are preferentially channeled through soil macropores while slowly diffusing into and out of the bulk soil matrix. The influence of macropore networks on intra-ped solute diffusion and preferential transport in a soil typical of subsurface-drained croplands in the Midwestern United States was studied in batch- and column-scale experiments. In the batch diffusion studies with soil aggregates, the estimated diffusion radius (length) of the soil aggregates corresponded to the half-spacing of the aggregate fissures, suggesting that the intra-ped fissures reduced the diffusion impedance and preferentially allowed solutes to diffuse into the soil matrix. In the column-scale solute transport experiments, the average diffusion radius (estimated from HYDRUS-2D simulations and a first-order diffusive transfer term) was nearly double that of the batch-scale study. This increase may be attributed to a loss of pore continuity and a compounding of the small diffusion impedance through macropores at the larger scale. The column-scale solute transport experiments also suggest that two preferential networks exist in the soil. At and near soil saturation, a primary network of large macropores (possibly root channels and earthworm burrows) dominate advective transport, causing a high degree of physical and sorption nonequilibrium and simultaneous breakthrough of a nonreactive (bromide) and a reactive (alachlor) solute. As the saturation level decreases, the primary network drains, while transport through smaller macropores (possibly intra-ped features) continues, resulting in a reduced degree of nonequilibrium and separation in the breakthrough curves of bromide and alachlor.  相似文献   

6.
A column containing four concentric layers of progressively finer-grained glass beads (graded column) was used to study the transport of the bacteriophage T7 in water flowing parallel to layering through a fining-upwards (FU) sedimentary structure. By passing a pulse of T7, and a conservative solute tracer upwards through a column packed with a single bead size (uniform column), the capacity of each bead type to attenuate the bacteriophage was determined. Solute and bacteriophage responses were modelled using an analytical solution to the advection-dispersion equation, with first-order kinetic deposition simulating bacteriophage attenuation. Resulting deposition constants for different flow velocities indicated that filtration theory-determined values differed from experimentally determined values by less than 10%. In contrast, the responses of solute and bacteriophage tracers passing upwards through graded columns could not be reproduced with a single analytical solution. However, a flux-weighted summation of four one-dimensional advective-dispersive analytical terms approximated solute breakthrough curves. The prolonged tailing observed in the resulting curve resembled that typically generated from field-based tracer test data, reflecting the potential importance of textural heterogeneity in the transport of dissolved substances in groundwater. Moreover, bacteriophage deposition terms, determined from filtration theory, reproduced the T7 breakthrough curve once desorption and inactivation on grain surfaces were incorporated. To evaluate the effect of FU sequences on mass transport processes in more detail, bacteriophage passage through sequences resembling those sampled from a FU bed in a fluvioglacial gravel pit were carried out using an analogous approach to that employed in the laboratory. Both solute and bacteriophage breakthrough responses resembled those generated from field-based test data and in the graded column experiments. Comparisons with the results of simulations using averaged hydraulic conductivities show that simulations employing averaged parameters overestimate bacteriophage travel times and underestimate masses recovered and peak concentrations.  相似文献   

7.
8.
A routing procedure is introduced which accounts for the loss of a conservative solute tracer from preferred paths during macropore flow. Water flow is treated as a series of kinematic waves from which the tracer is lost due to mixing previously stored soil water, and an expression for solute loss is added to a previously developed model. The model parameters are estimated through experiments at three different input rates applied to a column of a macroporous forest soil.The results of seven experimental runs indicate that solute losses are consistently highest at the early stages of infiltration and drainage flow. An empirical relationship is proposed which links the frequency distribution of the flow parameter with that for solute loss from the preferred path during transient water flow and solute transport.  相似文献   

9.
Continuous time random walk (CTRW) formulations have been demonstrated to provide a general and effective approach that quantifies the behavior of solute transport in heterogeneous media in field, laboratory, and numerical experiments. In this paper we first apply the CTRW approach to describe the sorbing solute transport in soils under chemical (or) and physical nonequilibrium conditions by curve-fitting. Results show that the theoretical solutions are in a good agreement with the experimental measurements. In case that CTRW parameters cannot be determined directly or easily, an alternative method is then proposed for estimating such parameters independently of the breakthrough curve data to be simulated. We conduct numerical experiments with artificial data sets generated by the HYDRUS-1D model for a wide range of pore water velocities (υ) and retardation factors (R) to investigate the relationship between CTRW parameters for a sorbing solute and these two quantities (υ, R) that can be directly measured in independent experiments. A series of best-fitting regression equations are then developed from the artificial data sets, which can be easily used as an estimation or prediction model to assess the transport of sorbing solutes under steady flow conditions through soil. Several literature data sets of pesticides are used to validate these relationships. The results show reasonable performance in most cases, thus indicating that our method could provide an alternative way to effectively predict sorbing solute transport in soils. While the regression relationships presented are obtained under certain flow and sorption conditions, the methodology of our study is general and may be extended to predict solute transport in soils under different flow and sorption conditions.  相似文献   

10.
11.
The paper describes the results of a laboratory study on the effects of macropore tortuosity on breakthrough curves BTCs and solute distribution in a Forman loam (fine loamy-mixed Udic Haploborolls) soil. BTC were obtained using 2-D columns (slab) containing artificial macropores of five different tortuosity levels. The BTCs were run under a constant hydraulic head of 0.08 m over an initially air dry soil. The input solutions contained 1190 mg l−1 of potassium bromide, 10 mg l−1 of Rhodamine WT, and 100 mg l−1 of FD&C Blue #1. A soil column without macropores served as a control. The displacement of a non-adsorbed tracer was not affected by the tortuosity level. An increase in macropore tortuosity progressively increased the breakthrough time, increased the apparent retardation coefficient (R′), decreased the depth to the center of mass of a given adsorbed tracer, and increased the anisotropy in tracer distribution profile. The relative importance of macropore tortuosity increased with an increase in the adsorption coefficient of the tracer. Compared to macropore continuity, the macropore tortuosity had greater impact on solute distribution profile than in its leaching.  相似文献   

12.
Chang CM  Wang MK  Chang TW  Lin C  Chen YR 《Chemosphere》2001,43(8):1133-1139
The predictive accuracy of using the one-dimensional advection–dispersion equation to evaluate the fate and transport of solute in a soil column is usually dependent on the proper determination of chemical retardation factors. Typically, the distribution coefficient (Kd) obtained by fitting the linear sorption isotherm has been extensively used to consider general geochemical reactions on solute transport in a low-concentration range. However, the linear distribution coefficient cannot be adequately utilized to describe the solute fate at a higher concentration level. This study employed the nonlinear equilibrium-controlled sorption parameters to determine the retardation factor used in column leaching experiments. Copper and cadmium transportation in a lateritic silty-clay soil column was examined. Through the explicit finite-difference calculations with a third-order total-variation-diminishing (TVD) numerical solution scheme, all results of the theoretical copper and cadmium breakthrough curves (BTCs) simulated by using the Freundlich nonlinear retardation factors revealed good agreement with the experimental observations.  相似文献   

13.
Fractures and biopores can act as preferential flow paths in clay aquitards and may rapidly transmit contaminants into underlying aquifers. Reliable numerical models for assessment of groundwater contamination from such aquitards are needed for planning, regulatory and remediation purposes. In this investigation, high resolution preferential water-saturated flow and bromide transport data were used to evaluate the suitability of equivalent porous medium (EPM), dual porosity (DP) and discrete fracture/matrix diffusion (DFMD) numerical modeling approaches for assessment of flow and non-reactive solute transport in clayey till. The experimental data were obtained from four large undisturbed soil columns (taken from 1.5 to 3.5 m depth) in which biopores and channels along fractures controlled 96-99% of water-saturated flow. Simulating the transport data with the EPM effective porosity model (FRACTRAN in EPM mode) was not successful because calibrated effective porosity for the same column had to be varied up to 1 order of magnitude in order to simulate solute breakthrough for the applied flow rates between 11 and 49 mm/day. Attempts to simulate the same data with the DP models CXTFIT and MODFLOW/MT3D were also unsuccessful because fitted values for dispersion, mobile zone porosity, and mass transfer coefficient between mobile and immobile zones varied several orders of magnitude for the different flow rates, and because dispersion values were furthermore not physically realistic. Only the DFMD modeling approach (FRACTRAN in DFMD mode) was capable to simulate the observed changes in solute transport behavior during alternating flow rate without changing values of calibrated fracture spacing and fracture aperture to represent the macropores.  相似文献   

14.
This study numerically investigates the influence of initial water content and rain intensities on the preferential migration of two fluorescent tracers, Acid Yellow 7 (AY7) and Sulforhodamine B (SB), through variably-saturated fractured clayey till. The simulations are based on the numerical model HydroGeoSphere, which solves 3D variably-saturated flow and solute transport in discretely-fractured porous media. Using detailed knowledge of the matrix, fracture, and biopore properties, the numerical model is calibrated and validated against experimental high-resolution tracer images/data collected under dry and wet soil conditions and for three different rain events. The model could reproduce reasonably well the observed preferential migration of AY7 and SB through the fractured till, although it did not capture the exact depth of migration and the negligible impact of the dead-end biopores in a near-saturated matrix. A sensitivity analysis suggests fast flow mechanisms and dynamic surface coating in the biopores, and the presence of a plough pan in the till.  相似文献   

15.
A two-dimensional model for colloid transport in geochemically and physically heterogeneous porous media is presented. The model considers patchwise geochemical heterogeneity, which is suitable to describe the chemical variability of many surficial aquifers with ferric oxyhydroxide-coated porous matrix, as well as spatial variability of hydraulic conductivity, which results in heterogeneous flow field. The model is comprised of a transient fluid flow equation, a transient colloid transport equation, and an equation for the dynamics of colloid deposition and release. Numerical simulations were carried out with the model to investigate the colloid transport behavior in layered and randomly heterogeneous porous media. Results demonstrate that physical and geochemical heterogeneities markedly affect the colloid transport behavior. Layered physical or geochemical heterogeneity can result in distinct preferential flow paths of colloidal particles. Furthermore, the combined effect of layered physical and geochemical heterogeneity may result in enhanced or reduced preferential flow of colloids. Random distribution of physical heterogeneity (hydraulic conductivity) results in a random flow field and an irregularly distributed colloid concentration profile in the porous medium. Contrary to random physical heterogeneity, the effect of random patchwise geochemical heterogeneity on colloid transport behavior is not significant. It is mostly the mean value of geochemical heterogeneity rather than its distribution that governs the colloid transport behavior.  相似文献   

16.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

17.
A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection-dispersion equation, which additionally considers virus inactivation in the solution, as well as virus removal at the solid matrix surface due to attachment (deposition), release, and inactivation. Two surface inactivation models for the fate of attached inactive viruses and their subsequent role on virus attachment and release were considered. Geochemical heterogeneity, portrayed as patches of positively charged metal oxyhydroxide coatings on collector grain surfaces, and physical heterogeneity, portrayed as spatial variability of hydraulic conductivity, were incorporated in the model. Both layered and randomly (log-normally) distributed physical and geochemical heterogeneities were considered. The upstream weighted multiple cell balance method was employed to numerically solve the governing equations of groundwater flow and virus transport. Model predictions show that the presence of subsurface layered geochemical and physical heterogeneity results in preferential flow paths and thus significantly affect virus mobility. Random distributions of physical and geochemical heterogeneity have also notable influence on the virus transport behavior. While the solution inactivation rate was found to significantly influence the virus transport behavior, surface inactivation under realistic field conditions has probably a negligible influence on the overall virus transport. It was further demonstrated that large virus release rates result in extended periods of virus breakthrough over significant distances downstream from the injection sites. This behavior suggests that simpler models that account for virus adsorption through a retardation factor may yield a misleading assessment of virus transport in "hydrogeologically sensitive" subsurface environments.  相似文献   

18.
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10–20% for our soils, which was consistent with the model's prediction, given an optimised “equivalent aggregate radius” for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils.  相似文献   

19.
Solutes spread out in time and space as they move downwards from the soil surface with infiltrating water. Solute monitoring in the field is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. A recently developed multi-compartment sampler is capable of measuring fluxes at a high spatial resolution with minimal disturbance of the local pressure head field. The objective of this paper is to use this sampler to quantify the spatial and temporal variation of solute leaching below the root zone in an agricultural field under natural rainfall in winter and spring. We placed two samplers at 31 and 25 cm depth in an agricultural field, leaving the soil above undisturbed. Each sampler contained 100 separate cells of 31 × 31 mm. Water fluxes were measured every 5 min for each cell. We monitored leaching of a chloride pulse under natural rainfall by frequently extracting the collected leachate while leaving the samplers buried in situ. This experiment was followed by a dye tracer experiment. This setting yielded information that widely surpassed the information that can be provided by separate anionic and dye tracer trials, and solute transport monitoring by coring or suction cups. The detailed information provided by the samplers showed that percolation at the sampling depth started much faster (approximately 3 h after the start of rainfall) in initially wet soil (pressure head above − 65 cm) than in drier soil (more than 14 h at pressure heads below − 80 cm). At any time, 25% of the drainage passed through 5–6% of the sampled area, reflecting the effect of heterogeneity on the flow paths. The amount of solute carried by individual cells varied over four orders of magnitude. The lateral concentration differences were limited though. This suggests a convective–dispersive regime despite the short vertical travel distance. On the other hand, the dilution index indicates a slight tendency towards stochastic–convective transport at this depth. There was no evidence in the observed drainage patterns and dye stained profiles of significant disturbance of the flow field by the samplers.  相似文献   

20.
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号