首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ~30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally sustainable solution to the management of waste products.  相似文献   

2.
Resurrection of the iron and phosphorus resource in steel-making slag   总被引:4,自引:0,他引:4  
 This research focused on the treatment of steel-making slags to recycle and recover iron and phosphorus. The carbothermal reduction behavior of both synthesized and factory steel-making slag in microwave irradiation was investigated. The slags were mixed with graphite powder and heated to a temperature higher than 1873 K to precipitate a lump of Fe–C alloy with a diameter of 2–8 mm. The larger the carbon equivalent (Ceq, defined in the text), the higher the fractional reduction of iron and phosphorus. An increase in the SiO2 content of slag led to a considerable improvement in the reduction for both iron and phosphorus because of the improvement in the fluidity of the slags and an increase in the activity coefficient of P2O5 in the slags. The extraction behavior of phosphorus from Fe–P–Csatd alloy was also investigated at 1473 K by carbonate flux treatment. For all the experiments with a processing time longer than 10 min, the phosphorus in the fluxes could be concentrated to more than 9% (w/w) showing that it could be used as a phosphorus resource. Compared with K2CO3 flux treatment, that using Na2CO3 was more effective for the extraction of phosphorus, and this was attributed to the lower evaporation of Na2CO3. Finally, a recycling scheme for steel-making slag is proposed. Received: March 16, 2001 / Accepted: November 12, 2001  相似文献   

3.

In the process of lead production from lead-bearing materials generated in copper metallurgy, a large amount of hazardous waste in the form of slag is produced. To assess the effect of the slag on the environment, its physicochemical properties were determined. In this study, the following methods were used: wavelength dispersive X-ray fluorescence (WD XRF), X-ray diffraction (XRD), and Bunte-Baum-Reerink method to determine softening and melting points, as well as viscosity examination and leaching tests. The measurements were performed on the slag produced with two different amounts of iron addition to the lead smelting process. The resulting slags, an oxide rich phase slag and a sulfide rich phase slag have different compositions and physicochemical properties. It was found that the increase in iron addition causes an increase in the softening melting point of the oxide rich phase slag by about 100 °C, and a twofold increase in the viscosity of both slag phases. The increase in iron addition also results in the decrease in As leachability and increase in Zn, Fe, and Cu leachability from the slags. Slag produced with increased iron addition has a greater impact on the environment.

  相似文献   

4.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   

5.
An overview of recovery of metals from slags   总被引:17,自引:0,他引:17  
Various slags are produced as by-products in metallurgical processes or as residues in incineration processes. According to the origins and the characteristics, the main slags can be classified into three categories, namely ferrous slag, non-ferrous slag and incineration slag. This paper analysed and summarised the generation, characteristics and application of various slags, and discussed the potential effects of the slags on the environment. On this basis, a review of a number of methods for recovery of metals from the slags was made. It can be seen that a large amount of slags is produced each year. They usually contain a quantity of valuable metals except for blast furnace slag and they are actually a secondary resource of metals. By applying mineral processing technologies, such as crushing, grinding, magnetic separation, eddy current separation, flotation and so on, leaching or roasting, it is possible to recover metals such as Fe, Cr, Cu, Al, Pb, Zn, Co, Ni, Nb, Ta, Au, and Ag etc. from the slags. Recovery of metals from the slags and utilisation of the slags are important not only for saving metal resources, but also for protecting the environment.  相似文献   

6.
Waste plastics recycling by an entrained-flow gasifier   总被引:1,自引:0,他引:1  
We studied an entrained-flow gasification process which efficiently converts waste plastics to energy at a high energy recovery rate. Waste plastics, after being shredded to <8 mm or <14 mm, were fed into an entrained-flow gasifier with air and oxygen. In the gasifier, organic substances were pyrolyzed, partially combusted, and then converted into synthetic gas (CO, H2) at a high temperature (over 1600 K). The clarified gasification characteristics were that the lower heat value (LHV) of the product gas was over 4.2 MJ/Nm3 and the cold gas efficiency was approximately 60%. Other inert substances in the wastes such as ashes and metals were melted into slag and condensed on bag filters. The bag filters and a water scrubber removed impurities such as dusts, heavy metals, and hydrogen halides from the product gases. Solid hydrocarbons, which include char and soot, were removed at a hot cyclone and on the bag filters. Received: July 19, 2000 / Accepted: October 3, 2000  相似文献   

7.
“Waste molten slag” is a glass-like material produced by the vitrification of solid waste or solid waste incineration residue. When using slags of this kind in a natural environment, their impact is anticipated to be at the same level as competitive or substituted materials. In this study, we made comparative evaluations between waste molten slags and competitive materials, using 20 samples in total. It was proved that release fluxes of metals from molten slags of municipal solid waste were almost at the same level as competitive or substituted materials. However, a larger impact will be caused from some types of slag that contain harmful metals in high concentrations, such as the slag from shredded automobile residues. The results of release flux showed that nearly 80% of the slope of the flux did not fit with the diffusion range. However, the linearity of every flux was extremely high, regardless of the slope.  相似文献   

8.
This paper provides the results of studies on the characteristics of novel material derived from pyrolysis/melting treatment of municipal solid waste in Japan. Slag products from pyrolysis/melting plants were sampled for the purpose of detailed phase analysis and characterization of heavy metal-containing phases using optical microscopy, electron probe microanalysis (EPMA), XRF and XRD. The study revealed that the slag material contains glass (over 95%), oxide and silicate minerals (spinel, melilite, pseudowollastonite), as well as individual metallic inclusions as the major constituents. A distinct chemical diversity was discovered in the interstitial glass in terms of silica content defined as low and high silica glass end members. Elevated concentrations of Zn, Cr, Cu, Pb and Ba were recorded in the bulk composition. Cu, Pb and Ba behave as incompatible elements since they have been markedly characterized as part of polymetallic alloys and insignificantly sulfides in the form of spherical metallic inclusions associated with tracer amounts of other elements such as Sb, Sn, Ni, Zn, Al, P and Si. In contrast, an appreciable amount of Zn is retained by zinc-rich end members of spinel and partially by melilite and silica glass. Chromium exhibits similar behavior, and is considerably held by Cr-rich spinel. The intense incorporation of Zn and Cr into spinel indicates the very effective enrichment of these two elements into phases more environmentally resistant than glass. There was no evidence, however, that Cu and Pb enter into the structure of the crystalline silicates or oxides that may lead to their easier leachability upon exposure to the environment.  相似文献   

9.
Air emissions and residual ash samples were collected and analyzed during experiments of open, uncontrolled combustion of electronic waste (e-waste), simulating practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were handled separately to simulate processes associated with metal recovery. The average emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDD/PCDFs) were 92 ng toxic equivalency (TEQ)/kg [n = 2, relative standard deviation (RSD) = 98%] and 11 900 ng TEQ/kg (n = 3, RSD = 50%) of the initial mass of the circuit boards and insulated wire, respectively. The value for the insulated wire is about 100 times higher than that for backyard barrel burning of domestic waste. The emission concentrations of polybrominated dibenzodioxins and dibenzofurans (PBDD/PBDFs) from the combustion of circuit boards were 100 times higher than for their polychlorinated counterparts. Particulate matter (PM) sampling of the fly ash emissions indicated PM emission factors of approximately 15 and 17 g/kg of the initial mass for the circuit boards and insulated wire, respectively. Fly ash samples from both types of e-waste contained considerable amounts of several metallic elements and halogens; lead concentrations were more than 200 times the United States regulatory limits for municipal waste combustors and 20 times those for secondary lead smelters. Leaching tests of the residual bottom ash showed that lead concentrations exceeded U.S. Environmental Protection Agency landfill limits, designating this ash as a hazardous waste.  相似文献   

10.
This paper gives the results of partial oxidation experiments of polyethylene (PE) in supercritical water (SCW). The experiments were carried out at a reaction temperature of 693K and a reaction time of 30 min using 6 cm3 of a batch-type reactor. The loaded sample weight was 0.3 g and there was 2.52 g water (0.42 g/cm3). The ratio of oxygen atoms to carbon atoms was 0.3. The results show a significant CO formation in O2–SCW, and the 1-alkene/n-alkane ratio in partial oxidation was higher than that in SCW pyrolysis. These results suggest the possibility of the hydrogenation of hydrocarbon through partial oxidation followed by a water–gas shift reaction. Received: July 19, 2000 / Accepted: September 28, 2000  相似文献   

11.
In Japan, melting-furnace fly ash (MFA) generated from ash melting and gasification/melting plants is considered an “urban mine” due to its high metal content. This study aimed to develop a novel approach to pretreating MFA for metal recovery. Water extraction with CO2 bubbling was investigated because MFA mainly consists of water-soluble salts containing elements such as Cl, Ca, Na, and K. Instead of acid addition, CO2 bubbling was applied to maintain the optimal pH for minimizing the release of target metal elements and maximizing the removal of undesirable elements during water extraction. The results revealed that CO2 bubbling effectively decreased the release of Pb, Zn, and Cd into the treatment water. This was mainly due to coprecipitation with CaCO3, which was primarily formed by the reaction of Ca2+ from the MFA with CO3 2− from the CO2 gas. The bubbling process also helped accelerate the removal of Cl from MFA. Furthermore, the study showed that it is possible to lower the water-to-solid ratio to 5 with only a slight reduction in water extraction effect. Finally, approximately four times the concentration of target metals (rare metals and Cu, Pb, and Zn) was achieved by removing 90% of Cl, 70%–90% of Na and K, and 30%–40% of Ca through water extraction with CO2 bubbling, resulting in a concentration of target metals that was nearly equal to that of ore.  相似文献   

12.
This work presents a method capable of melting the incinerator bottom ash and fly ash in a plasma furnace. The performance of slag and the strategies for recycling of bottom ash and fly ash are improved by adjusting chemical components of bottom ash and fly ash. Ashes are separated by a magnetic process to improve the performance of slag. Analytical results indicate that the air-cooled slag (ACS) and magnetic-separated slag (MSS) have hardness levels below 590 MPa, indicating fragility. Additionally, the hardness of crystallized slag (RTS) is between 655 and 686 MPa, indicating toughness. The leached concentrations of heavy metals for these three slags are all below the regulatory limits. ACS appears to have better chemical stability than MSS, and is not significantly different from RTS. In the potential alkali-silica reactivity of slag, MSS falls on the border between the harmless zone and the potentially harmful zone. ACS and RTS fall in the harmless zone. Hence, the magnetic separation procedure of ashes does not significantly improve the quality of slag. However, RTS appears to improve its quality.  相似文献   

13.
Hydrogarnet was synthesized hydrothermally below 200°C using molten slag obtained from municipal solid waste. For comparison, it was also synthesized using pure-phase CaO–Al2O3–SiO2–H2O, as reported previously. The structural and textural properties of this material were investigated using various analytical and spectroscopic techniques such as X-ray diffraction, X-ray fluorescence spectrometry, atomic absorption spectrometry (AAS), thermogravimetry/differential thermal analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The Cl fixation ability of hydrogarnet was investigated in the temperature range 500–800°C in a fixed-bed flow reactor using a HCl concentration (1000 p.p.m.v.) similar to that of incinerator exhaust gas. Under these experimental conditions, the hydrogarnet was capable of reducing the HCl gas level to less than 1 p.p.m.v. Analysis of the spent catalyst revealed that the hydrogarnet was being transformed into wadalite and CaCl2 at high temperatures. The elution test for chromium ions in hydrogarnet obtained from slag was also used, and it was found that chromium ions were not eluted from hydrogarnet. Received: January 27, 2001 / Accepted: October 11, 2001  相似文献   

14.
Integrated iron and steel plants generate large amounts of metallurgical slag, which usually contains some quantity of metals or mixtures of oxides that could be treated to be recycled in various applications. The conventional method for disposal of slags is dumping. However, it is possible to process the slags to be used in the production of metallic iron, or as an additive in cement making. In this study, a basic oxygen furnace (BOF) steelwork slag obtained from the Kardemir integrated iron and steel works, Karabuk, Turkey is used. A drum magnetic separator system with pre-engineered crucial processing parameters of drum revolution speed, drum radius, drum flesh thickness, and magnitude of the magnetic field applied is utilized, as these parameters have a competing influence on the results. Subsequently, the effects of slag grain size and the drum-blade gap are investigated in the separation efficiency of magnetic grains. It is found that collection of magnetic grains is improved by decreasing the grain size of slags and moreover, the collection of magnetic grains fraction is increased with an increase in the gap between the blades and drum.  相似文献   

15.
Organophosphoric acid triester (OPE) concentration levels in water and bottom sediment at the Osaka North Port Sea-Based Solid Waste Disposal Site were investigated, and the behavior of OPEs in the water environment of the waste disposal site was examined. The more highly water-soluble OPEs were frequently detected in raw water. Of the OPEs detected, TCEP and TCPP showed very high concentrations (1.0–90 μg/l), followed by TEP (0.3–10 μg/l) > TBXP (0.8–6.3 μg/l) > TDCPP (0.6–6.2 μg/l) > TBP (0.2–1.5 μg/l) > TPP (<0.1 μg/l). Most OPEs detected in water were eluted from the disposal waste to the water phase immediately and behaved as dissolved forms with no distribution in suspended solids (SS). On the other hand, the less water-soluble OPEs, such as TCP or TEHP, were detected in bottom sediment but hardly at all in water samples. All OPEs were detected at the waste disposal site, within which their concentration levels were uniform. It appeared that the less water-soluble OPEs were present as SS-associated forms and behaved in line with the floating surface sludge at the bottom. Received: July 6, 1998 / Accepted: February 25, 1999  相似文献   

16.
Acidic bioleaching of heavy metals from sewage sludge   总被引:2,自引:0,他引:2  
The overall objective of this study was to evaluate the use of controlled bio-acidification prior to land application as a decontamination process to remove heavy metals from sludge. The sulfur-oxidizing bacteria were naturally available in the sludge samples and were activated by providing sulfur and aeration at 28°C–30°C. Activation resulted in bio-acidification to pH 2 within 5–11 days. Successive inoculation of fresh sludges with 5% acidified samples reduced the acidification time to 2–3 days in most samples. Bio-acidification resulted in dissolving significant quantities of heavy metals from all sludge types tested. The maximum solubilization results were: 86%–97% for Ni; 48%–98% for Pb; 26%–71% for Cr; 18%–91% for Zn; 16%–90% for Cu; 7%–60% for Cd. Limited metal solubilization results were observed in the various control samples that accompanied the bio-acidified samples. The leaching results in the control samples were limited to 2%–19% for Ni, 0%–7% for Pb, 0%–5% for Cr, 0.3%–4% for Zn, 0.2%–4% for Cu and 0%–3% for Cd. The results confirmed that Ni and Pb were the easiest metals to dissolve from the various sludge types. On the other hand, the lowest solubilization results were observed for Cu and Cd, and moderate solubilization results were achieved for Cr. The bio-acidification process resulted in moderate gains in terms of improving the suitability of tested sludges for land application. Received: April 19, 1999 / Accepted: November 4, 1999  相似文献   

17.
MSW slag materials derived from four pyrolysis melting plants in Japan were studied from the viewpoint of petrology in order to discriminate the glass and mineral phases and to propose a petrogenetic model for the formation process of molten slag. Slag material is composed of two major components: melt and refractory products. The melt products that formed during the melting process comprise silicate glass, and a suite of minerals as major constituents. The silicate glass is essentially composed of low and high silica glass members (typically 30% and 50% of SiO(2), respectively), from which minerals such as spinels, melilite, pseudowollastonite, and metallic inclusions have been precipitated. The refractory products consist mainly of pieces of metals, minerals and lithic fragments that survived through the melting process. Investigations demonstrated that the low silica melts (higher Ca and Al contents) were produced at upper levels of high temperature combustion chamber HTCC, at narrower temperature ranges (1250-1350 degrees C), while the high silica melts formed at broader temperature ranges (1250-1450 degrees C), at the lower levels of HTCC. The recent temperature ranges were estimated by using CaOAl(2)O(3)SiO(2) (CAS) ternary liquidus diagram that are reasonably consistent with those reported for a typical combustor. It was also understood that the samples with a higher CaO/SiO(2) ratio (>0.74-0.75) have undergone improved melting, incipient crystallization of minerals, and extensive homogenization. The combined mineralogical and geochemical examinations provided evidence to accept the concept of stepwise generation of different melt phases within the HTCC. The petrogenesis of the melt products may therefore be described as a two-phase melt system with immiscible characteristics that have been successively generated during the melting process of MSW.  相似文献   

18.
Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.  相似文献   

19.
Owing to the large amount of waste slags produced by zinc industry, it has become necessary to recycle it in some areas. Road construction has significant potential for the use of waste materials because more material is always needed. In this study, the engineering behaviour of asphalt concrete was investigated using mineral aggregates with waste slag, which is a by-product of the zinc–lead production industry. The asphalt concrete tested in this study was fabricated using 25, 50, 75 and 100 % mixing ratios instead of the conventional fine mineral aggregate (11, 22, 33 and 44 % rate of total aggregate mixture) to determine the possibility of using slags in the binder course of bituminous hot mixtures. The asphalt concretes, made of waste slags and conventional asphalt concrete, were evaluated in terms of their fundamental engineering properties such as Marshall stability, flow, Marshall quotient (MQ), bulk specific gravity, air voids and voids filled with bitumen in the total mix characteristics. The results indicate that the addition of waste slag as mineral aggregate improves the engineering characteristic performance and that it can be used in bituminous hot mixtures. In addition, principal component analyses were applied to examine the significance of each Marshall parameter, and a regression model was developed to estimate the MQ value using effective parameters.  相似文献   

20.
This study investigates the fate and behavior of lead (Pb), copper (Cu), antimony (Sb), and arsenic (As) in a shooting range soil. The soil samples were collected from the surface (0–15 cm) and the subsurface (15–40 cm and 40–55 cm) of a grassy and wood chip covered impact area behind a firing position. Optical microscopy images indicate significant amounts of corroded bullet fragments and organic wood chips in the surface soil. Analysis by X-ray powder diffraction (XRPD) and scanning electron microscopy electron dispersive X-ray spectroscopy (SEM-EDS) showed that metallic Pb was transformed into lead oxides (litharge PbO and massicot PbO) and lead carbonates (hydrocerussite Pb3(CO3)2(OH)2, cerussite PbCO3, and plumbonacrite Pb5(CO3)3O(OH)2). Rietveld quantification indicated the surface soil contained 14.1% metallic Pb, 17.9% hydrocerussite, 5.2% plumbonacrite, 5.9% litharge, and 3.9% massicot on a dry weight basis, or a total of 39.7% Pb, far in excess of lead concentrations typically found in US shooting range soils. Metallic Cu (bullet jacket material) appeared stable as no secondary minerals were detected in the surface soil. As and Sb concentrations were on the order of 1,057 mg/kg and 845 mg/kg respectively. The elevated soil pH coupled with high organic carbon content is thought to have caused downward migration of metals, especially for Pb, since 4,153 mg Pb/kg was observed at a depth of 55 cm. More than 60% of Pb was concentrated in the coarse soil (> 0.425 mm) fraction, suggesting soil clean-up possible by physical soil washing may be viable. The concentrations of Pb, As, and Sb in the toxicity characteristic leaching procedure (TCLP) extracts were 8,869 mg/L, 6.72 mg/L, and 6.42 mg/L respectively, were above the USEPA non-hazardous regulatory limit (As and Pb) of 5 mg/L. The elevated Sb and As concentrations draw concern because there is historically limited information concerning these metals at firing ranges and several values exceeded local soil cleanup criteria. As the high Pb concentrations appeared to be linked to the presence of organic-rich berm cover materials, the use of wood chips as berm cover to prevent soil erosion requires reconsideration as a shooting range management practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号