首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In the rocky subtidal ecosystem of the western North Atlantic outbreaks of the introduced epiphytic bryozoan Membranipora membranacea cause defoliation of kelp beds and facilitate the introduction of other non-native benthic species. We quantified size- and temperature-dependent growth rates of M. membranacea colonies in the field and the laboratory for durations of 8–23 days. Also, we examined the interaction between food abundance and temperature on growth rates of newly settled colonies in the laboratory. Growth rates were positively related to temperature and increased exponentially with size of colonies over the ranges examined (5.7–16.2°C and 0.5–192 mm, respectively), and were significantly higher in the field than in the laboratory. There was an interactive effect between food and temperature on the size and growth rates of colonies, with the most pronounced effects of food limitation on colonies grown at the warmest temperatures, and no effect of food on colonies grown at the coldest temperatures. Quantifying the growth rates of introduced species is essential to understanding their population dynamics, particularly when outbreaks can have severe impacts on the native community.  相似文献   

2.
C. H. Lucas  S. Lawes 《Marine Biology》1998,131(4):629-638
The effects of food availability and temperature on sexual maturation and female reproductive output of the scyphomedusa Aurelia aurita was examined in two populations from the contrasting environments of Southampton Water and Horsea Lake, England. Trends in oogenesis and subsequent reproductive output differed markedly between the two populations. In Southampton Water, the onset of sexual maturation occurred earliest in the larger medusae, but eventually all females became ripe, the smallest being 45 mm bell diameter (BD). The decrease in minimum size at maturity was correlated with increasing temperature. In A. aurita from Horsea Lake, size at maturity varied on a seasonal basis, with the smallest ripe female being only 19 to 20 mm BD. There were spring and autumn periods of sexual maturation in this population. During the autumn period, it is likely that food limitation was playing a more critical role in determining medusa size, with decreasing temperature indirectly affecting A. aurita by limiting primary and secondary production. In similar-sized ripe medusae, fecundity was greater in Southampton Water, but the planula larvae produced were significantly smaller than those in Horsea Lake. It is suggested that in Horsea Lake, the quality of the larvae are greater in terms of biochemical content to ensure survival of the few gametes produced (i.e. K-strategy). Comparison of the reproductive effort of the two A. aurita populations revealed that medusae from Southampton Water, which experience greater food availability, are able to direct more energy to reproduction than Horsea Lake medusae. In the latter, A. aurita medusae appear to partition the available food resources into either somatic growth (and therefore increased future fecundity) when food is abundant, or reproductive growth when food is scarce. Received: 24 June 1997 / Accepted: 23 March 1998  相似文献   

3.
The amount of food and when it is available affect both the timing of reproduction and the number of gametes produced by purple sea urchins, Strongylocentrotus purpuratus. To investigate this further, the effects of food availability on feeding rates, gonad growth, and gamete development were examined in S. purpuratus collected from the Point Loma kelp forest near San Diego, California, USA (32.69° N, 117.26° W) in September (Fall) 2007, and February (Spring) and July (Summer) 2008, using laboratory mesocosms. Each seasonal laboratory feeding experiment lasted 3 months, and different levels of food availability were established with different feeding frequencies (from 1 to 7 days week−1). Gonad tissues of male and female urchins were staged at the end of each experiment using histological analyses. Reduced food availability resulted in increased daily consumption rates, especially in the Fall when gamete development began. Food limitation at this time resulted in failure to produce viable gametes, suggesting there is a critical period early in gonad development when food limitation affects reproductive competency. Food limitation later in gonad development did not stop viable gamete production, although it did reduce gamete output.  相似文献   

4.
Seasonal changes in catch rate, growth and mortality of Nassarius reticulatus from an intertidal lagoon and a wave-exposed beach at Rhosneigr (Anglesey, North Wales, UK) are described. The number of N. reticulatus caught in baited traps from the lagoon was significantly higher (>125 individuals trap−1) during the summer (>18°C), than at <12°C (<65 individuals trap−1), and the numbers caught in the lagoon were an order of magnitude greater than on the beach, >13 individuals trap−1 in July (>16°C), and <5 individuals trap−1 between December and April (<9.5°C). Predictions of shell growth attained by N. reticulatus annually in the lagoon using graphical modal progression analysis (MPA) of length frequency data, were similar to the growth of marked and recaptured lagoon N. reticulatus. Predictions of shell growth using computerised length frequency distribution analysis (LFDA), however, did not reflect the growth as accurately as MPA. Modal progression analysis demonstrated that N. reticulatus from the lagoon achieved a higher asymptotic maximum shell length (L ) and a lower growth constant (K) than animals from the beach. Shell growth was seasonal with growth of the lagoon individuals slowing down towards the end of September and resuming in early April, about a month later than the beach individuals. Mortality of N. reticulatus was greater during the summer, and survival was lower in the lagoon than on the beach. Recruitment patterns were similar in the lagoon and on the beach, and MPA and LFDA predicted that larval N. reticulatus settled between late summer and early autumn, with juveniles (7–8.9 mm) appearing in the population the following year, between February and April. Growth of male and female N. reticulatus in the laboratory was similar and was temperature and size dependent. The different growth patterns between N. reticulatus from the two habitats, predicted using MPA, were maintained when individuals were reared under laboratory conditions for ∼6 months; N. reticulatus <21 mm from the beach grew faster than individuals from the lagoon, although N. reticulatus >21 mm from the lagoon grew faster and attained a larger length (26 mm) than individuals from the beach (24 mm). Low food availability did not affect N. reticulatus survival in the laboratory but significantly suppressed shell growth.  相似文献   

5.
Poleck  T. P.  Denys  C. J. 《Marine Biology》1982,70(3):255-265
The effect of temperature on molting, growth, and maturation rates was studied on laboratory-maintained Euphausia superba. The length of intermolt periods (IMP's) was inversely proportional to temperature (20.10 d, SD=1.60, at 0.12°C; 16.87 d, SD=1.68, at 0.97°C; and 12.48 d, SD=0.90, at 4.48°C), and directly proportional to krill size at 0.12°C and 0.97°C. For individually maintained krill the maximum growth rate at 4.48°C (0.068 mm d-1) was nearly twice that at 0.68°C (0.037 mm d-1). There was no observable temperature effect on maturation rates. The maturation changes of juveniles at all temperatures indicated that more than two years are probably required to reach maturity. Mature males and females regressed to immature forms, suggesting that E. superba may reproduce in successive years. These results and previously reported field and laboratory data for E. superba and other euphausiid species suggest a 4+ year life span for this species.This work was supported by NSF grant DPP 76-23437  相似文献   

6.
Shelled molluscs frequently exhibit a record of damage on exterior surfaces that can evidence past predation attempts and may affect survival and growth. In South Carolina populations of the ribbed marsh mussel, Geukensia demissa, >90% of the individuals and up to 60% of the total shell area are damaged. A trend toward greater amounts of damage occurred on mid-marsh compared to oyster reef mussels from the barrier beach side of inlets. Shell damage effects on survivorship and shell and tissue growth were assessed seasonally during multi- and single-season field experiments. Mussels from a common mid-marsh site were divided into size classes (~50 or 70 mm), treated to create two damage levels (undamaged and damaged), and replaced within mid-marsh exclusion cages to minimize additional shell damage. In both multi- and single-season experiments increased shell damage resulted in significantly greater mortality. Linear shell growth was unaffected by increased damage, but 50 mm mussels grew twice as fast. Shell mass increased 16–50% in the multi-season and single-season winter period, but decreased 7–12% during the single-season summer period. Tissue mass significantly decreased 31–43% in 50 mm damaged mussels, but increased by 33% for 70 mm mussels in both multi-season and the single-season winter period experiments. Shell damage did reduce tissue mass 43% in 70 mm single-season summer mussels. Experimental results indicate shell damage from a simulated increase in predation can affect negatively both survival and growth of marsh mussels. Seasonal timing of shell damage and initial mussel size also influenced the effects of sublethal predation on shell and tissue growth. The previously unrecognized importance of sublethal predation and the resultant significant negative effects of shell damage on survival and growth will affect the distribution and population dynamics of G. demissa in coastal marshes and will influence the overall contribution of ribbed mussels to estuarine ecosystems.  相似文献   

7.
M. Katoh 《Marine Biology》1989,101(2):227-234
Two mark-recapture studies, regular population censuses, field observations, and laboratory culture were used to study the life history of the tropical marine gastropod Cypraea annulus Linnaeus, 1758 from Cape Maeda, Okinawa Island, from April 1984 to March 1986. In the field, the average rate of increase in shell length of marked juvenile snails was 1.0±0.3 mm wk-1 (N=13), with a maximum of 1.5 mm wk-1 (initial shell length 10.6 to 17.2 mm). In the laboratory, the maximum growth rate of juveniles was 3.0 mm wk-1 with food ad libitum. Snails with primordial teeth on the shells grew at a rate of 0.1 to 0.5 mm wk-1 for about 2 wk. The adults continued to grow at a similar rate for an additional 3 to 6 wk, and ceased detectable growth when some females started spawning egg masses. In the littoral zone on Okinawa Island, snails reproduced throughout the year. Egg masses brooded by three females (shell length 17.4 to 21.3 mm) in the field contained 90 000 to 133 000 ova. In the laboratory, brooding periods of three females lasted 6,8, and 9 d. The estimated average frequency of spawning was 5 egg masses female-1 yr-1. The mean shell length of adult females (20.3 mm) was significantly larger than that of adult males (19.6 mm). The life-history strategy of C. annulus is characterized by rapid growth, high fecundity, and repeated spawning throughout the year.  相似文献   

8.
N. Ota  M. Tokeshi 《Marine Biology》2000,136(1):101-114
The effects of variable food supply on growth rate and feeding behaviour in two coexisting intertidal gastropods were examined through field and laboratory experiments involving mark and recapture procedures, growth experiments under controlled food supply and video observations of feeding. All cohorts of both Japeuthria species grew most in summer, with the highest growth rate being achieved by the youngest cohort of both sexes. In contrast, almost all cohorts (except the youngest one) showed zero to negative growth in winter. The growth rates of Japeuthria species clearly varied depending on feeding frequencies and the initial size of individuals. Females of both species had a significantly higher growth rate than males, though the difference became less marked with decreasing food supply. The total time spent on feeding and the length of the first feeding bout generally increased as the duration of the interval between meals was increased across treatments. From both the field growth experiment and the observations of feeding behaviour it is clear that J. ferrea had a higher frequency of feeding than J. cingulata in the field; 1- to 3-d intervals of feeding frequency in the former and 3- to 6-d intervals in the latter. Most notably, the two species showed a reversal in growth rates with changing conditions of food supply. When food was relatively abundant J. ferrea achieved better growth than J. cingulata, but J. cingulata grew better than J. ferrea under low food supply. In view of the fact that J. ferrea seems to be competitively superior to J. cingulata under normal levels, the present observation that J. cingulata can perform better than J. ferrea when food availability is low gives an important advantage to the latter in terms of its coexistence with the former. Received: 9 March 1999 / Accepted: 8 October 1999  相似文献   

9.
Growth and moulting of Neomysis integer (Crustacea: Mysidacea)   总被引:1,自引:0,他引:1  
The growth and moulting of Neomysis integer (Leach) was investigated in the field and the laboratory. In the Ythan estuary, Aberdeenshire, Scotland, monthly samples taken from November 1976 to October 1978 revealed that the summer generation juveniles and mature individuals grew at a rate of 4 to 5 mm and 1 to 2 mm monthly, respectively. The winter generation had a growth rate of 3 to 4 mm monthly for juveniles and about 1 mm for mature individuals; during the winter there was a period of 3 mo when growth was almost completely stopped. Mysids reared in the laboratory on Artemia sp. nauplii had an average daily growth rate of 0.06 mm at 9°C and 0.09 mm at 16°C. The growth factors of N. integer ranged from 3 to 17% for mature and immature individuals, respectively. Intermoult periods ranged from 3 to 7 d in immature mysids to 12 to 18 d in mature mysids. Average laboratory growth curves calculated from information on growth factors and intermoult periods indicate that at 9°C (winter generation) it takes N. integer 277 d to grow to be a 15 mm mature individual, whereas at 16°C (summer generation) it takes 188 d. N. integer moults 24 times as it grows from a juvenile to a mature individual.  相似文献   

10.
The great barracuda (Sphyraena barracuda) is a widespread, ecologically and socioeconomically important coastal fish, yet very little is known about its larvae. We examined spawning and larval ecology of Western Atlantic sphyraenids using monthly ichthyoplankton samples collected over 2 years along a transect spanning the east–west axis of the Straits of Florida (SOF). Samples were dominated by the great barracuda (92.8%) and sennets (Sphyraena borealis and Sphyraena picudilla; 6.6%). While larval sennets and S. barracuda displayed similar vertical distributions (majority in upper 25 m), horizontal and temporal patterns of abundance suggested a spatial and temporal species replacement between larval S. barracuda and sennets that tracks adult ecology. The diet of both taxa consisted largely of copepods, with inclusion of fish larvae at 8 mm SL, and in S. barracuda alone, a switch in the wet season to exclusive piscivory by 12 mm SL (18 days post-hatch). A lack of piscivory in S. barracuda larvae captured in the dry season corresponded to slower larval growth than in the wet season. Larval growth was also related to size-at-hatch and larval age such that larvae that were larger at hatch or larger (older) at capture grew faster at earlier ages, suggesting faster larval growth, and indirectly larger hatch size, conveys a survival advantage. Unlike larval growth, instantaneous mortality rate did not differ with season, and no lunar cyclic patterns in spawning output were identified. Our results provide insight into the pelagic phase of sphyraenids and highlight the importance of both diet and hatch size to the growth and survival of fish larvae in low latitude oceanic environments.  相似文献   

11.
L. V. Basch 《Marine Biology》1996,126(4):693-701
Effects of larval and algal culture density and diet composition on development and survival of temperate asteroid larvae were studied in the laboratory at Santa Cruz, California, USA, during summer and fall of 1990. Larvae of Asterina miniata were reared at two densities, 0.5 or 1.0 ml-1, and fed one or two species of cultured phytoflagellates — Dunaliella tertiolecta alone or mixed with Rhodomonas sp. — at three concentrations of 5x102, 5x103, and 5x104 total cells ml-1. Algal concentration strongly influenced larval development; however, larval density also had a marked effect. Development progressed further with increasing algal concentration. Larval growth and differentiation were sometimes uncoupled; i.e., growth measures were directly related to food level, while differentiation indicators were less so. At the lowest food level, growth was negative and differentiation was arrested at early precompetent stages; these larvae never formed juvenile rudiments or brachiolar attachment structures. Development times of larvae given more food ranged from 26 to 50 d and depended directly on food availability. Development time to metamorphosis at the highest food concentration was similar for siblings fed D. tertiolecta alone or mixed with Rhodomonas sp. In contrast, when food level was an order of magnitude lower, larvae fed the algal mixture metamorphosed significantly earlier than larvae fed the unialgal diet. This suggests interactive effects of food quantity and food quality. Survival was little affected by larval or food density, except at the lowest ration. Feeding experiments in well-controlled laboratory conditions are useful to predict and compare the physiological or developmental scope of response of larvae to defined environmental factors; however, results from such studies should not be extrapolated to predict rates and processes of larval development in nature.  相似文献   

12.
To assess the effects of both temperature and food ration on gonad growth and oogenesis of the green sea urchin, Strongylocentrotus droebachiensis (O.F. Müller), individuals collected December 1996 (winter experiment) and June 1997 (summer experiment) were maintained for 3 months in one of four experimental treatments: (1) 3 °C and fed ad libitum (high ration), (2) 3 °C and fed one-seventh of the maximum ration (low ration), and (3) 12 °C and fed the high ration; (4) 12 °C and fed the low ration. All individuals were fed an artificial diet and exposed to only 1 h of light every day. At the end of both experiments, mean gonad indices of sea urchins fed the high ration had increased significantly (11–24% and 6–19% in the winter and summer experiments, respectively), while the gonad indices of individuals fed the low ration did not change. At the high ration (both experiments), the increase in gonad index of sea urchins occurred primarily as the result of a significant increase in the mass of nutritive phagocytes, as revealed by histological analyses. Primary oocytes were significantly larger in individuals held at 3 °C than at 12 °C throughout the winter experiment, regardless of food ration; during the summer experiment, primary oocytes were significantly larger in individuals receiving the high ration, regardless of the temperature at which they were held. These results suggest that: (1) food availability is the most important factor regulating energy storage and the relative size of gonads throughout the year, (2) temperature affects the rate of growth and maturation of primary oocytes during the later stages of oogenesis, and (3) once gametogenesis has been initiated, mature ova will be produced, even under conditions of low food availability. Conditions of high food availability in summer and low temperature in winter would thus favor reproductive output in sea urchin populations. Received: 1 March 2000 / Accepted: 4 October 2000  相似文献   

13.
Atlantic blue marlin (Makaira nigricans) and sailfish (Istiophorus platypterus) larvae were collected from 10 monthly cruises (June–October 2003 and 2004) across the Straits of Florida to test (1) whether growth differed between the more productive western region near the Florida shelf, and the less productive eastern region toward the Bahamas, and (2) whether growth was related to prey consumption. Examination of larval sagittal otoliths revealed that instantaneous growth and daily growth during the first 2–3 weeks of life did not vary significantly between the two regions for either species. However, recent growth during the last two full days prior to collection was greater in the west for blue marlin larvae. Recent growth of blue marlin larvae <9 mm SL (primarily zooplanktivorous) was significantly related to prey composition (faster growth when higher proportions of Farranula copepods were consumed). Western larvae grew faster and had higher proportions of Farranula in their guts. Trends for sailfish larvae were not significant. In both species, comparison of early growth between <9 and ≥9 mm SL size groups indicated that growth trajectories diverged around 5–8 mm SL, the time when billfish larvae become capable of piscivory. Significantly faster growth of larger (older) larvae suggests that mortality was selective for fast growers and that the transition to piscivory may be a critical point in the early life of billfish.  相似文献   

14.
F. S. Chia  R. Koss 《Marine Biology》1978,46(2):109-119
Rostanga pulchra MacFarland, a small (1 to 2 cm) dorid nudibranch, lays an average of 7000 eggs in the laboratory during a period of 30 days in the summer. The veligers hatch 15 to 16 days after oviposition and it takes another 35 to 40 days to become competent for metamorphosis at a temperature of 10° to 15°C. Larval cultures were maintained initially at a concentration of 500 veligers per 100 ml of filtered sea water (antibiotics added). During the planktotrophic phase of development, the veliger grows from 150 to 300 m in shell length. Although the veligers are generalists in their food preference, the best result (faster growth) was achieved by feeding them with a combination of Monochrysis lutheri and Isochrysis galbana. The concentration of food cells was kept at 104 cells per ml of culture media and was supplied every 2 to 3 days. A veliger which is competent to metamorphose is identifiable morphologically by its propodium, eyespots, rhinophores, and spiculated dorsal papillae. The entire metamorphic process lasts 24 h when a suitable substrate such as the food sponge Ophlitaspongia pennata is provided. The competent veliger is able to delay metamorphosis for at least 3 weeks. Juveniles were kept in the laboratory for 70 days and, during this period, grew to a length of 4.5 mm.  相似文献   

15.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

16.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

17.
Food selection by laboratory-reared larvae of scaled sardines Harengula pensacolae, and bay anchovies Anchoa mitchilli, was compared. Natural plankton was fed to the larvae during the 22 days following hatching. Food levels in the rearing tanks were maintained at an average of 1,600 to 1,800 potential food organisms per liter. Larvae of both species selected as food copepod nauplii, copepodites, and copepods; initial feeding was on organisms of 50 to 75 body width. Larvae of H. pensacolae averaged 4.2 mm in total length at hatching and those of A. mitchilli about 2.0 mm. H. pensacolae larvae grew about 1.0 mm per day and A. mitchilli 0.70 mm per day. The mean number of food organisms in each digestive tract was greater in H. pensacolae than in A. mitchilli, and the difference in number increased as the larvae grew. Average size of food organisms eaten increased for both species with growth, because of selection by the larvae; the average size of copepodites and copepods in digestive tracts increased at a faste rate in H. pensacolae than A. mitchilli. A. mitchilli longer than 8 mm did not eat copepod nauplii.Contribution No. 170, Bureau of Commercial Fisheries Tropical Atlantic Biological laboratory, Miami, Florida 33149, USA.  相似文献   

18.
A. O'Dea  B. Okamura 《Marine Biology》1999,135(4):581-588
Zooid size and colony growth of the estuarine bryozoan Conopeum seurati (Canu) (order: Cheilostomatida; suborder: Malacostegina) were examined over 15 mo at Avonmouth Dock, Avon, England. Data were analysed in conjunction with synchronous measurements of temperature, salinity and food availability. Zooid length, width and area were strongly temperature-dependent, while both food availability and colony growth rate had no significant effect on zooid length, width or area. Salinity and the interaction of temperature and salinity significantly influenced zooid length and area, suggesting that changes in zooid size may result from oxygen limitation in warm waters. The validity of a number of other mechanisms proposed to account for temperature-related changes in zooid size is discussed. The results support the use of zooid size as an indicator of both long-term trends and seasonal variations in temperature in Recent and fossil assemblages as long as data sets are large and the effects of other factors on zooid size are considered. Colony growth rate was found to be significantly influenced by both the amount of food available to the colonies and the combined effect of temperature and food availability, suggesting that growth rate increases as food increases, but that the former may be limited at low temperatures when metabolic rates are low. Received: 30 March 1999 / Accepted: 24 September 1999  相似文献   

19.
An experiment under laboratory conditions was conducted to test the hypothesis that development and growth of copepodite stages in Calanus chilensis are temperature-dependent and not subject to food shortage in the upwelling area of the Humboldt Current, northern Chile. Field data obtained from June 1994 to May 1995 in Bahía Mejillones (23°S) were used to define four combinations of temperature and food under which copepodites were reared from Stage CIII to adulthood. The high temperature was 18.1 °C and the low temperature 13.1 °C, whereas the high food level was in the range of 6.8 to 24.8 μg l−1 chlorophyll a and the low level 1.0 to 6.8 μg l−1 chlorophyll a. As food a mixture of three unknown species of phytoflagellates and the diatom Navicula cryptocephala was used. This phytoplankton was initially obtained from the same sampling sites as copepods and kept in f/2 media at stable levels and composition throughout the experiment. The development rate (1/t), estimated from the time (t) elapsing between Stage CIV and adult, was significantly affected by both temperature and food, although low-food effects were much more remarkable. Low-food conditions also significantly reduced body length and “structural” (lipid-discounted) body mass at adulthood, while temperature only affected body length. The weight-specific growth rate was also affected by food and temperature, but again food effects were much more drastic. The results indicate that C. chilensis is a highly sensitive species to lack of food, and is possibly subject to food shortage during its annual cycle in the coastal upwelling area of northern Chile. Food limitation may help explain the seasonal pattern of adult size reported by previous studies in the area and the lack of consistence between the number of generations predictable from a temperature-dependent model and that observed in the field during the annual cycle. Received: 10 September 1996 / Accepted: 29 October 1996  相似文献   

20.
Egg production rates of Calanus glacialis (Jaschnov) were measured in the laboratory (in 1985) and in the field (in 1983–1984). In the laboratory, daily egg production was studied over one month at alternating feeding and fasting conditions. Spawning ceased after 3 d of starvation and started as soon as females were reintroduced to food. Egg production increased stepwise at 3-d intervals. Females survived more than nine months in captivity. In the field, egg production was measured during PREMIZEX 1983 and MIZEX 1984 at 5 and 16 stations, respectively. High egg production was found in polynyas on the East Greenland Shelf, where melt water induced stratification which supported a spring bloom. Highest egg production was converted into 6.1% body carbon female-1 d-1. Under thick pack-ice no eggs were spawned. Spawning was induced in females from a station with low food abundance by feeding them on board ship. These results from both experiments and field studies show that egg production in C. glacialis is closely related to food availability. Thus, C. glacialis exhibits a reproductive behavior similar to that of C. finmarchicus, but not C. hyperboreus, the other two dominant species in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号