首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
GOAL, SCOPE AND BACKGROUND: Malodorous volatiles derived from the decomposition of biowaste within the process of composting might pose a risk to human health. Different techniques of process engineering have been developed to minimise the burden of malodorous compounds in air possibly affecting compost workers and residents in the vicinity. METHODS: In the present study, three different composting facilities were examined for the emission of volatiles to estimate the impact of process engineering on the dispersal of odorous compounds and to discuss its relevance for human health. RESULTS AND DISCUSSION: Concentrations of single compounds belonging to alcohols, ketones, furanes, sulfur-containing compounds and especially terpenes ranged from 10(2) up to nearly 10(6) ng/m3 depending on the sampling sites and the process engineering. The ratio of MVOC and total VOC measured changed throughout the process of biodegradation. A certain combination of volatile compounds coincided with the occurrence of typical compost odour. CONCLUSION: The type of process engineering seemed to have a major impact on the emission of volatiles, as amounts of (microbial) volatiles emitted were characteristic for the different techniques used. Thus, the MVOC emission basically depends on the degree of biodegradation. It is likely that the concentrations workers are exposed to can have an impact on human health. RECOMMENDATIONS AND OUTLOOK: It is obvious that less sophisticated types of process engineering give rise to greater amounts of bioaerosols and volatiles and, therefore, technical devices have to be improved and controlled regularly to minimise adverse health effects on workers.  相似文献   

2.
Thirteen airborne fungal species frequently isolated in composting plants were screened for microbial volatile organic compounds (MVOC), i.e., Aspergillus candidus, A. fumigatus, A. versicolor, Emericella nidulans, Paecilomyces variotii, Penicillium brevicompactum, Penicillium clavigerum, Penicillium crustosum, Penicillium cyclopium, Penicillium expansum, Penicillium glabrum, Penicillium verruculosum, and Tritirachium oryzae. Air samples from pure cultures were sorbed on Tenax GR and analyzed by thermal desorption in combination with GC/MS. Various hydrocarbons of different chemical groups and a large number of terpenes were identified. Some compounds such as 3-methyl-1-butanol and 1-octen-3-ol were produced by a number of species, whereas some volatiles were specific for single species. An inventory of microbial metabolites will allow identification of potential health hazards due to an exposure to fungal propagules and metabolites in the workplace. Moreover, species-specific volatiles may serve as marker compounds for the selective detection of fungal species in indoor domestic and working environments.  相似文献   

3.
Emissions of malodors are considered to be the greatest threat to the compost industry. In work presented here, several simple odor mitigation alternatives were investigated for their effectiveness in preventing the release of common odorants, such as terpenes, ammonia, and reduced sulfur compounds. The mitigation methods studied included the use of a blanket of finished compost, compost amendment mixed within the feedstock, odor neutralizing agents (ONAs), and oxygen release compounds (ORCs). Among the mitigation alternatives investigated in this study, the use of finished compost as a blanket and finished compost as an amendment yielded the most conclusive and significant results. Both of these alternatives yielded a substantial emission reduction for terpenes, ammonia, and reduced sulfur compounds. The application of finished compost blanket resulted in up to 95% reduction of terpene and 25% reduction of ammonia emissions. Blending the feedstock with finished compost also provided substantial reduction of terpene emissions ranging from 73.6 to 93.1% at the 24% blending ratio, and up to 85% ammonia reduction a the 35% blending ratio. Use of finished compost also provided 75% lower reduced sulfur compound emissions at the 12% blending ratio. Misting and application of odor neutralizing agents did not result in any consistent reduction in emissions for any of the odorous compounds tested.

Implications The odor emissions from composting are often considered to be the biggest threat to composting facilities. Because most facilities cannot afford enclosures and contained composting vessels, there is a need to inexpensively and effectively control the odor emissions from composting facilities. The findings of this research can lead the way for efforts to control odor easily and cost effectively. In fact, the application of a compost blanket for odor control is already gaining acceptance by the composting industry.  相似文献   

4.
Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH3 and H2S during the aerobic composting process was 742 g ton-1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton-1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.  相似文献   

5.
ABSTRACT

The emissions of odors and volatile organic compounds produced from a commercial composting operation have been studied using a laboratory-scale composting system. The composting activity of a typical commercial compost feed was followed by monitoring the composting temperature, as well as the respiratory rate. Using a controlled aeration system, the gaseous volatiles produced were tested for odors using the "dilution-to-threshold" method, as well as gas composition, as determined by gas chromatography-mass spectrometry.

The results indicated that while there may be a reasonable correlation between the release of volatile organic compounds (VOCs) and odors, care has to be taken when trying to identify offensive odors with specific chemical species. However, the data obtained suggests that offensive odors formed during commercial composting may be due to sulfurous and nitrogenous compounds, although their concentrations in the compost gases may not be very high.

The major release of VOCs occurred during the first two weeks of composting, after which the gaseous releases fell dramatically as the composting process proceeded and temperatures started to fall.  相似文献   

6.
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.  相似文献   

7.
The ability of municipal waste compost as a daily cover material to reduce the odorous emissions associated with landfill surfaces was investigated. Trials were carried out using landfill gas, a certified sulphurous gas mix and ambient air as a control. Odorous gas was passed through portable test column filled with compost at different densities (590 kg/m3 and 740 kg/m3). Gas samples were taken from the inlet, outlet and at varying column depths and examined using a combination of sensory analysis (olfactometry) and a novel analytical method (Transportable Selected Ion Flow Tube--TSIFT). Results for the trials using landfill gas showed a 69% odour reduction (OU/m3) through the column for compost with a bulk density of 590 kg/m3, and a reduction of 97% using compost with a bulk density of 740 kg/m3. TSIFT analysis showed an overall decrease in the concentration of terpenes, and sulphurous compounds in the outlet gas from the column for both bulk densities. No significant trend could be identified for the concentrations at different depths within the column. Results show the ability of compost to reduce landfill odours under differing conditions. The inconclusive data provided by TSIFT analysis may be due to the analysis of compounds that are not contributing to odour, and thus highlights the potential for synergetic effects and the importance of sensory measurement when examining odorous emissions.  相似文献   

8.
Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.  相似文献   

9.
Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g−1 for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g−1). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass.  相似文献   

10.
The volatile organic carbon (VOC) and odours emitted during the aerobic biological processing of municipal solid waste (MSW) was studied in a pilot-scale reactor. VOCs were detected by different techniques on solid waste samples and the outlet air stream, before and after a biofilter. Organic compounds (alpha-pinene, beta-myrcene, D-limonene) were also measured in condensate water and leachate from the process. Results showed uniformity in the composition of the air in the solid waste samples, air sampled during the process and condensed water, indicating a matrix-derived origin of these compounds. Leachates, however, contained substances with a quite different molecular structure from the compounds identified in the gaseous fraction. Most of the substances in the gaseous effluent had a hydrocarbon-like structure, mainly terpenoids. The odour produced and detected through olfactometry agreed with GC-MS analyses. This was true above all for terpenes.  相似文献   

11.
The occurrence and temporal distribution of airborne volatile organic compounds (VOC) at nine closely grouped locations in a suburban environment on the edge of the coastline of the Southampton Water estuary, located on the coastline of central southern England, was studied over six monthly periods spanning 1996–1997. The sampling sites circumscribed a juxtaposed municipal incinerator, waste collection and processing centre and sewage treatment plant. Three sets of airborne samples being taken before and after the closure of the municipal incinerator. VOC with volatilities of low to medium polarity ranging broadly from those of n-butane to n-octadecane were the major focus of interest. Over 100 individual compounds were routinely found in localised samples taken during the period of study. The types and concentrations of VOC identified partly reflect the imprint of the various waste processing operations on atmospheric VOC within the local environment. The most abundant VOC classes consisted of aromatic, chlorinated and organosulphide compounds, with smaller proportions of alkanes, alkenes and cycloalkane compounds. Compounds produced by sewage-processing and waste management operations, including volatile organosulphides and various oxygenated compounds, may occasionally exceed olfactory detection thresholds and represent a source of potential odour complaints in the local urban environment.  相似文献   

12.
Padhy PK  Varshney CK 《Chemosphere》2005,59(11):1643-1653
Foliar emission of volatile organic compounds (VOC) from common Indian plant species was measured. Dynamic flow enclosure technique was used and the gas samples were collected onto Tenax-GC/Carboseive cartridges. The Tenax-GC/Carboseive cartridges were attached to the thermal disorber sample injection system and the gas sample was analysed using gas chromatography (GC) with flame ionisation detection (FID). Fifty-one local plant species were screened, out of which 36 species were found to emit VOC (4 high emitter; 28 moderate emitter; and 4 low-emitter), while in the remaining 15 species no VOC emission was detected or the levels of emission were below detection limit (BDL). VOC emission was found to vary from one species to another. There was a marked seasonal and diurnal variation in VOC emission. The minimum and maximum VOC emission values were < 0.1 and 87 microgg(-1) dry leaf h(-1) in Ficus infectoria and Lantana camara respectively. Out of the 51 plant species studied, 13 species are reported here for the first time. Among the nine tree species (which were selected for detailed study), the highest average hourly emission (9.69+/-8.39 microgg(-1) dry leaf) was observed in Eucalyptus species and the minimum in Syzygium jambolanum (1.89+/-2.48 microgg(-1) dry leaf). An attempt has been made to compare VOC emission from different plant species between present study and the literature (tropical and other regions).  相似文献   

13.
Peñuelas J  Llusià J 《Chemosphere》2001,45(3):237-244
The seasonal pattern of non-terpenoid C6-C10 VOC emission by seven Mediterranean woody species (Bupleurum fruticosum, Cistus albidus, Pinus halepensis, Arbutus unedo, Erica arborea, Quercus coccifera, and Q. ilex) was studied under field conditions. Branch chamber samples were sorbed on carbotrap and analyzed by thermal desorption in combination with GC-MS. These non-terpenoid C6-C10 VOC emissions were large, almost of similar magnitude to those of terpenes. Overall, maximum values were recorded in spring and summer (up to 12 microg g(-1) DM h(-1) in Q. ilex) and minimum values in autumn and winter (up to 5 microg g(-1) DM h(-1) in Q. ilex). These C6-C10 VOC emissions represented 2.82% of the photosynthetic C fixation in summer and 0.22% in winter. Some compounds such as 2-ethoxyethyl acetate were emitted by most species, others such as 3-hexen-1-ol, phenol or decanal were significantly emitted only by few species. The greatest diversity of emitted non-terpenoid C6-C10 VOCs was observed in spring and in Q. ilex. Temperature seemed a strong driver of these seasonal changes but other species-specific and seasonal factors seem involved. These results indicate that C6-C10 non-terpenoid VOCs contribute a rather significant fraction of the total biogenic VOC flux from these Mediterranean species, especially in spring and summer, and therefore should be considered in VOC emission inventories and in model predictions of tropospheric chemistry.  相似文献   

14.
Soils emit a large variety of volatile organic compounds. In natural ecosystems, measurements of microbial volatile organic compound (MVOC) exchange rates between soil and atmosphere are difficult due to e.g. the spatial heterogeneity of the belowground organisms, and due to the many potential sources for the same compounds. We measured in laboratory conditions the MVOC emission rates and spectra of eight typical fungi occurring in boreal forest soils. The studied species are decomposers (Gymnopilus penetrans, Ophiostoma abietinum), ectomycorrhizal (Cenococcum geophilum, Piloderma olivaceum, Suillus variegatus, Tomentellopsis submollis) and endophytic fungi (Meliniomyces variabilis, Phialocephala fortinii). The MVOC emissions contained altogether 21 known and 6 unidentified compounds whose emission rates were >0.1 μg g(DW)?1 h?1. The most abundant compounds were the short-chain carbonyl compounds (acetone and acetaldehyde). The greatest carbonyl emissions were measured from P. olivaceum (1.9 mg acetone g(DW)?1 h?1) and P. fortinii (0.114 mg acetaldehyde g(DW)?1 h?1). Terpenoid emissions (isoprene, mono- and sesquiterpenes) were detected from some fungal cultures, but in relatively small amounts. We conclude that soil micro-organisms can potentially be responsible for significant emissions of volatiles, especially short-chain oxygenated compounds, to the below-canopy atmosphere.  相似文献   

15.
Regulations require that emissions of VOC from the application of can end sealing compounds be limited to 440 grams per liter. One can manufacturer has investigated the cost and feasibility of a VOC capture/control system and the availability and efficacy of water-based and high solids end sealing compounds. After characterizing and optimizing VOC evaporation rates, a prototype VOC containment system was tested on one can end sealing compound line. An 83 percent VOC capture efficiency was obtained at approximately 950 acfm. A cost analysis for a full facility capture and control system gave cost-effectiveness values of $1.21 to $2.36 per pound of VOC controlled. An evaluation oflow-VOC end sealing compounds, including long term pack tests, produced a water-based compound that could be implemented on pet food can ends by early 1986. Continuation of pack tests could allow full facility conversion to zero VOC water-based compounds by mid- to late-1987. Using an innovative averaging technique, the can manufacturer has achieved equivalent compliance with the 440 grams per liter standard.  相似文献   

16.
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006–2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.  相似文献   

17.
Pagans E  Barrena R  Font X  Sánchez A 《Chemosphere》2006,62(9):1534-1542
Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wastes investigated revealed a strong dependence on temperature, with a distinct pattern found in ammonia emissions for each waste in the thermophilic first stage of composting (exponential increase of ammonia emitted when increasing temperature) than that of the mesophilic final stage (linear increase of ammonia emissions when increasing temperature). As composting needs high temperatures to ensure the sanitisation of compost and ammonia emissions are one of the main environmental impacts associated to composting and responsible for obtaining compost with a low agronomical quality, it is proposed that sanitisation is conducted after the first stage in large-scale composting facilities by a proper temperature control. CAPSULE: Ammonia emission pattern and correlation with process temperature are presented for the composting process of different organic wastes.  相似文献   

18.
An integrated approach was applied to identify the key odorants comprising emissions from different zones in two adjacent waste treatment facilities (an aerobic biological treatment plant and an anaerobic landfill site), identify their precise sources, and distinguish the interactive influences between them. Seven odor families were investigated, including alcohols, terpenes, carbonyls, aromatics, volatile fatty acids (VFAs), sulfur compounds, and ammonia. Principal components analysis, characteristic molecular ratios, and ternary diagrams were used to differentiate the interactive influence of the odor sources. Among typical biotic compounds, terpenes were found to be more suitable as odor markers for their better fingerprinting character than sulfur compounds and VFAs. Ratios of p-cymene at sampling locations related to the biological treatment plant (aerobic status) were between 0.00 and 0.25, whereas those at landfill-related sampling points (anaerobic status) were between 0.25 and 1.0. The molecular ratio of terpenes was also found to be an appropriate means to differentiate between homologous and similar odor sources such as an aerobic biological treatment plant and anaerobic landfill.

Implications:?The aim of this work is to identify the key odorants comprising emissions from different zones in two adjacent waste treatment facilities, identify their precise sources, and distinguish the interactive influences between them. The emission of gaseous pollutants greatly affects the living quality of nearby residents, and odor complaints are becoming a major problem. In this study we utilized various pretreatment and analytical methods to obtain integrated emission information of gaseous pollutants. The results showed terpenes were found to be more suitable as odor markers for their better fingerprinting character than sulfur compounds and VFAs.  相似文献   

19.
An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16–32 μg h−1 m−2 (30–60 ng h−1 per g dry plant––540–1080 ng h−1 per plant), in total. Limonene, -thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (MS) and temperature coefficients were determined: βlimonene=0.108 K−1 and MS=14.57 μg h−1 m−2; βsabinene=0.095 K−1 and MS=5.39 μg h−1 m−2.

The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.  相似文献   


20.
Painting of ship external surfaces in building or repair shipyards generates significant emissions of volatile organic compounds (VOC) to the atmosphere. Such emissions have not been specifically regulated so far. The purpose of our study is therefore to evaluate the quantities and as far as possible the nature of the emitted VOC, to characterize the dispersion of these chemicals in the atmosphere and to assess the exposure and resulting health risks for surrounding populations.This study is focused on VOC emitted during outdoor work involving use of paints and solvents. VOC emissions are diffuse, since they come from the whole painted surfaces. A methodology for quantifying them is developed and tested, using information provided by ALSTOM—Chantiers de l’Atlantique and data found in paint technical sheets. Its reliability is checked against emission values established by ALSTOM or found in literature.Then, for two particular situations, construction on one hand, repair on the other hand, atmospheric dispersion of total VOC is simulated to assess the long-term impact (characterized by the plume extension and the annual mean concentrations) of these compounds.Finally, a health-risk assessment based on the estimates is carried out to evaluate the risks by inhalation for people living near the site. Considering the presumed composition of paints and the available reference toxicological values, total VOC are entirely assimilated to toluene. In both examples (construction and repair) and in the current state of knowledge, the calculated risk is not of health concern.Several ways for taking this study further are proposed: a more exhaustive collection of data relative to VOC and other substances contained in paints, on-site measurement of VOC in the ambient air, characterization of diffuse emissions related to other activities, such as purging or welding, and other pollutants, like particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号