首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 μm, corresponding with the wavelength region of visible light, which accounted for ~72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

2.
Forecasts of the impact of emissions changes on visibility use light scattering efficiencies—the change in the amount of light scattered with a change in mass of an aerosol constituent. This paper demonstrates how light scattering efficiencies depend on interactions between the aerosol constituents. Calculations are presented for two model aerosols: NH4HSO4 droplets and a ‘typical’ urban aerosol. These calculations demonstrate that the traditional means of predicting visibility impairment for increases in atmospheric emissions is not generally appropriate. Different light scattering efficiencies are needed for distinct meteorological conditions and aerosol compositions thus for typical high and low visibility events.  相似文献   

3.
Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997–2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57–95%) over all regions, but are responsible for a smaller fraction of AOD (26–76%). We define “background” aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36–97% for surface concentrations and 38–89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.  相似文献   

4.
Different aspects of visibility degradation problems in Brisbane were investigated through concurrent visibility monitoring and aerosol sampling programs carried out in 1995. The relationship between the light extinction coefficients and aerosol mass/composition was derived by using multiple linear regression techniques. The visibility properties at different sites in Brisbane were found to be correlated with each other on a daily basis, but not correlated with each other hour by hour. The cause of scattering of light by moisture (bsw) was due to sulphate particles which shift to a larger size under high-humidity conditions. The scattering of light by particulate matter (bsp) was found to be highly correlated with the mass of fine aerosols, in particular the mass of fine soot, sulphate and non-soil K. For the period studied, on average, the total light extinction coefficient (bext) at five sites in Brisbane was 0.65×10−4 m−1, considerably smaller than those values found in other Australian and overseas cities. On average, the major component of bext is bsp (49% of bext), followed by bap (the absorption of light, mainly by fine soot particles, 28%), bsg (Rayleigh scattering, 20%) and bsw (3%). The absorption of light by NO2 (bag) is expected to contribute less than 5% of bext. On average, the percentage contribution of the visibility degrading species to bext (excluding bag) were: soot (53%), sulphate (21%), Rayleigh scattering (20%), non-soil K (2%) and humidity (3%). In terms of visibility degrading sources, motor vehicles (including soot and the secondary products) are expected to contribute more than half of the bext (excluding bag) in Brisbane on average, followed by secondary sulphates (17%) and biomass burning (10%).  相似文献   

5.
Abstract

Organic carbon has been found to be a significant component of aerosols that impair visibility in remote areas across the country. Organic aerosols are particularly important in western areas of the United States and contribute roughly equally with sulfate aerosols and dust in the total extinction budget. Potential visibility enhancement resulting from various future energy management options that reduce volatile organic carbon and particulate material emissions from fossil-energy-related processes hinges on the relative contribution of the fossil-fuel-derived organic component to the extinction budget. Thus, additional studies are needed to quantify the partitioning of organic carbon between biogenic and fossil sources. Relative humidity (RH) also plays an important role in visibility impairment. It is well known that water soluble aerosol species, such as sulfate and nitrate, can increase light-scattering efficiencies of fine particles by more than an order of magnitude as RH is increased from 20-30% to 90-95%. Organic carbon aerosol has been found to be a mixture of more soluble and less soluble components, but few studies have been performed to evaluate the RH response function of aerosols composed of these components, either separately or in combination, especially at high relative humidities. The purpose of this paper is to describe some experiments that could address the major uncertainties of biogenic and fossil carbon contributions to the fine particle extinction budget and visibility impairment.  相似文献   

6.
During the October-December 1998 period, 30 daily samples of size-separated airborne respirable suspended particulates (RSP) were collected at the quasi-rural Kadoorie Agricultural Research Centre (KARC) in central New Territories (NT), Hong Kong, Special Administrative Region (SAR). Results of analysis indicate that sulphate is the predominant water-soluble species, and that sulphate, nitrate and ammonium together contribute to most of the total water-soluble fine aerosol mass. An interesting result obtained through principal component analysis (PCA) following varimax rotation of the bivariate correlation matrix for water-soluble species is that the first component (PCl) is made up exclusively of SO4 and NH4 ions. The stoichiometric ratio and correlation coefficient between the two ions suggest that ammoniated sulphate compounds are the probable species responsible for the PCI. Further, the use of a linear multivariate visibility model which accommodates the effect of relative humidity (RH) shows that SO4 and NH4 are the only anions important in visibility degradation. It is found that SO4 in aerosol at the KARC can be used to predict the visual range (or extinction coefficient) recorded from Kings Park, Kowloon, approximately 10 km away. This result suggests that SO4 (and possibly NH4) is, generally, likely to be of regional rather than of local origin. Further observations suggest that the model is most applicable to a moderate visual range, 10 km < R(v) < or = 20 km under a rather broad range of ambient relative humidity, 40% < RH < or = 80. However, this inference does not preclude the contributions to visibility degradation--mostly by absorption--by some of the water-insoluble aerosol constituents, including carbon, or the pollutant gas, NO2.  相似文献   

7.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

8.
The dominant optical characteristics of Southeast Asia (SEA)'s regional aerosols were determined from the cluster analysis of the 26 AERONET aerosol inversion products, including aerosol light scattering/absorption indicators and aerosol size/shape parameters retrieved from 2003 to 2007. The data sets were acquired from four stations: Bac Giang in Vietnam and Mukdahan, Pimai, and Silpakorn University in Thailand. The cluster analysis showed agreement among the aerosol optical characteristics, land cover/uses, season as the surrogate of the prevailing winds, and observations from the literature. The results of this study showed that during the northeast prevailing winds from mid-September to December, the high aerosol exposure events were most frequently observed over the upwind station and less often over the downwind stations. This aerosol exhibited a single scattering albedo (SSA) of approximately 0.95 (440 nm), a relatively low refractive index, and a larger fine-mode size, suggesting it had the characteristics of urban/industrial aerosols reported in the literature. These aerosol sources were upwind from Bac Giang, probably in eastern China. From January to April, the aerosol exhibited a lower SSA of approximately 0.90, a higher refractive index, and a smaller fine-mode size, suggesting biomass burning smoke reported in the literature. The SEA urban aerosol exhibited a mean SSA of approximately 0.90 (440 nm) or lower, and the coarse-mode aerosol, possibly road dust or soil dust, played a role from October to January when seasonal winds are strongest. The results from a canonical discriminant function analysis suggest that the dominant SEA aerosol clusters tended to be separated by a canonical function positively correlated with SSA, the fine-mode asymmetry factor, and the overall fine-mode size and negatively correlated with the refractive index.  相似文献   

9.
The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999. The RHR default goal is to reduce haze linearly to natural background in 2064 from the baseline period of 2000-2004. The EPA default method for estimating natural and baseline visibility uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula. The IMPROVE formula predicts the light extinction coefficient from aerosol chemical concentrations measured by the IMPROVE network. The IMPROVE light scattering coefficient formula using data from 1994-2002 underestimated the measured light scattering coefficient by 700 Mm(-1), on average, on days with precipitation. Also, precipitation occurred as often on the clearest as haziest days. This led to estimating the light extinction coefficient of precipitation, averaged over all days, as the light scattering coefficient on days with precipitation (700 Mm(-1)) multiplied by the percent of precipitation days in a year. This estimate added to the IMPROVE formula light extinction estimate gives a real world estimate of visibility for the 20% clearest, 20% haziest, and all days. For example, in 1993, the EPAs Report to Congress projected visibility in Class I areas would improve by 3 deciviews by 2010 across the haziest portions of the eastern United States because of the 1990 Clean Air Act Amendments. Omitted was the light extinction coefficient of precipitation. Adding in the estimated light extinction coefficient of precipitation, the estimated visibility improvement declines to <1 deciview.  相似文献   

10.
Under the auspices of Project METROMEX, studies of visibility de-teoration downwind of St. Louis were conducted during July-August 1974-1975. Estimates of horizontal visual range, standard meteorological data, and aerosol characteristics within the mixing layer were acquired upwind, over, and downwind of the metropolitan area by means of airborne transects. Aerosol number, surface, and volume distributions for particles between 0.025-2.5 µm were generated from the airborne measurement of Aitken nucleus concentrations, cloud condensation nuclei, and aerosols detected in situ with optical probes. Visibility reduction amounting to 50% of prevailing regional upwind visibilities consistently occurs at a distance corresponding to 2-3 hours travel time downwind for an air parcel moving with the mean transport wind. The regions of visibility minimum do not coincide with locations of maximum Aitken nucleus concentrations, but rather correspond in space and time to increased values of cloud condensation nuclei and increased numbers of particles in the 0.1-2.5 µm diameter range. Comparisons of observed aerosol evolution with similar laboratory studies suggest that most of the light scattering aerosols are of secondary origin.  相似文献   

11.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

12.
Abstract

The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999.1 The RHR default goal is to reduce haze linearly to natural background in 2064 from the baseline period of 2000–2004. The EPA default method2,3 for estimating natural and baseline visibility uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula. The IMPROVE formula predicts the light extinction coefficient from aerosol chemical concentrations measured by the IMPROVE network. The IMPROVE light scattering coefficient formula using data from 1994–2002 underestimated the measured light scattering coefficient by 700 Mm?1, on average, on days with precipitation. Also, precipitation occurred as often on the clearest as haziest days. This led to estimating the light extinction coefficient of precipitation, averaged over all days, as the light scattering coefficient on days with precipitation (700 Mm?1) multiplied by the percent of precipitation days in a year. This estimate added to the IMPROVE formula light extinction estimate gives a real world estimate of visibility for the 20% clearest, 20% haziest, and all days. For example, in 1993, the EPAs Report to Congress projected visibility in Class I areas would improve by 3 deciviews by 2010 across the haziest portions of the eastern United States because of the 1990 Clean Air Act Amendments. Omitted was the light extinction coefficient of precipitation. Adding in the estimated light extinction coefficient of precipitation, the estimated visibility improvement declines to <1 deci-view.  相似文献   

13.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

14.
Aerosol light scattering measurements as a function of relative humidity   总被引:1,自引:0,他引:1  
The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.  相似文献   

15.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

16.
Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90 % are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km?1, respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44 % of the extinction is from suspended particles, 3 % is from air molecules, about 5 % is from NO2 absorption, 0.35 % is from RH, and approximately 48 % is unaccounted for, which may represent errors in the data as well as contribution of other atmospheric constituents omitted from the analysis. Stronger regression equation is achieved in the summer, meaning that the extinction is more predictable in this season using pollutant concentrations.  相似文献   

17.
杭州城市大气消光系数和能见度的影响因子研究   总被引:8,自引:0,他引:8  
为了解杭州市能见度下降与大气污染之间的关系,在2001年5月至2002年5月对不同粒径的颗粒物(PM10、PM2.5)的质量浓度进行了观测,结合晴天天气条件下的大气能见度,推算污染物和水汽分子对大气的消光散射,发现细微颗粒物的散射消光特性对杭州市能见度下降起主要作用,并得到能见度与细微颗粒物浓度比值(PM2.5/PM10)的关系;分析了大气能见度和消光系数与PM2.5/PM10和相对湿度的相关系数。  相似文献   

18.
The integrating nephelometer of Beuttel and Brewer has been adapted successfully for continuous, objective monitoring of atmospheric aerosols. The paper includes a summary of work done to date with this improved device. In particular, the following points are discussed: (1) the design and operation of the instrument; (2) calibration of the instrument; (3) correlation of nephelometer output to the mass concentration of atmospheric aerosol; (4) correlation of nephelometer output with visual range; (5) the wavelength dependent nephelometer and the regularity of the wavelength dependence of haze; and (6) application of integrating nephelometer to mobile reconnaissance of aerosols. The utility of the integrating nephelometer for monitoring visibility and aerosol mass concentration is also emphasized.  相似文献   

19.
A comprehensive study is conducted of visibility in California using prevailing visibility measurements at 67 weather stations in conjunction with data on particulate concentrations and meteorology. The weather station visibility data, when handled with special techniques that account for the nature of visibility reporting practices, prove to be of very good quality for the purposes of most of the analyses that are attempted. It is found that the most important meteorological parameters with respect to visibility are relative humidity, temperature, and special weather events (especially fog). A detailed isopleth map of visibility within California, when compared with earlier work on nationwide visibility, reveals that California experiences far more severe and complex spatial gradients in visibility than those observed anywhere else in the U.S. Two major pockets of heavy man-made visibility impact in California are the Los Angeles basin and the San Joaquin Valley. The spatial, seasonal, and diurnal patterns of visibility are found to be readily explainable in terms of corresponding patterns in emissions, air quality, and meteorology. Regression analyses relating visibility to relative humidity and aerosol concentrations produce high levels of correlation and physically reasonable regression coefficients; these analyses indicate that secondary aerosols are major contributors to visibility reduction in California. An analysis of long-term visibility trends from 1949 to 1976 reveals several interesting features in historical visibility changes for California.  相似文献   

20.
In order to investigate the nature and sources of regional haze, the General Motors mobile Atmospheric Research Laboratory was used in the summer of 1980 to monitor ambient air quality in the Shenandoah Valley of northern Virginia. On the average, 92% of the total light extinction was due to scattering by particles; the remainder was due to scattering by gases and absorption by gases and particles. Sulfate aerosols were the most Important visibility-reducing species. Averaging 55% of the fine participate mass, sulfates (and associated water) accounted for 78% of the total light extinction. The second most abundant fine particulate, accounting for 29% of the fine mass, was carbon—most of which was organic. Most of the remaining particulate mass and extinction were due to crustal materials. It is estimated that 78–86% of the total light extinction was caused by anthropogenic aerosol, most of which originated in major source areas of the midwest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号