首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用SBR反应器,以人工模拟高浓度氨氮废水为进水,研究DO质量浓度和碳源投加方式对同步硝化反硝化的影响.结果表明,在连续投加碳源的条件下,当SBR内的DO质量浓度分别为3 mg/L、0.9 mg/L、0.5 mg/L、0.3 mg/L时,都发生了同步硝化反硝化,TN的去除率分别为24.87%、33.80%、37.07%及29.06%;DO质量浓度为0.5mg/L时,TN去除效率最高.SBR内的氨氮负荷可以达到0.64kg N/(m3·d),即使在0.3 mg/L的低溶解氧环境下,COD和氨氮的去除率都可以达到90%以上.控制SBR内DO质量浓度恒定为0.5mg/L,采用一次性投加碳源方式时,TN去除率仅有30.31%;当采用连续投加碳源方式时,TN去除率为50% - 60%;采用半连续投加碳源方式时,TN的去除率可达81.48%.试验过程中,活性污泥絮体粒径为0.2~0.5 mm,大于普通的活性污泥工艺中的絮体.较大的絮体使得絮体内存在较大的缺氧区,有利于取得较高的脱氮效率.  相似文献   

2.
不同类型反应器好氧颗粒污泥培养过程研究   总被引:1,自引:0,他引:1  
在SBR、非理想PF及CSTR反应器中接种普通活性污泥,控制反应条件:溶解氧DO 2.0 mg/L左右,pH值8.0左右,温度(25±0.2)℃,经过80 d左右时间,3个反应器中均成功培养出好氧颗粒污泥,最大颗粒污泥粒径达到2.5 mm左右。成熟好氧颗粒污泥具有较好的COD去除及脱氮能力。SBR反应器COD去除率稳定在95%~97%,氨氮去除率超过92%;PF反应器COD去除率达到95%~98%,氨氮去除率最高为98%;CSTR反应器COD去除率稳定在88%~90%,氨氮去除率超过90%。SBR反应器TN去除率最高,达到70%~78%,PF反应器TN去除率为65%~70%,CSTR反应器TN去除率达到55%~62%。3个反应器均发生全程同步硝化反硝化。  相似文献   

3.
以某污水厂的氧化沟污泥和剩余污泥为培养对象,经厌氧驯化成以硫酸盐还原菌(SRB)占优的污泥.在pH值为6.0-7.0,最佳温度为35℃,硫酸盐质量浓度为4 g/L,剩余污泥固定化小球在反应时间为24 h,Zn(Ⅱ)的进水质量浓度为400 mg/L时,Zn(Ⅱ)的去除率达到了100%,而氧化沟污泥固定化小球Zn(Ⅱ)的去除率只有90%左右;剩余污泥固定化小球在反应时间为8 h,Cd(Ⅱ)的进水质量浓度为500 mg/L时,Cd(Ⅱ)的去除率就达到了95%左右,而氧化沟污泥固定化小球Cd(Ⅱ)的去除率不到80%.实验结果表明剩余污泥是硫酸盐还原菌污泥固定化技术的最佳污泥.  相似文献   

4.
采用SBR法处理高盐肝素钠生产废水,探讨了曝气时间、进水p H、温度等参数对COD和氨氮降解效果及污泥生长的影响。结果表明,控制曝气时间为10 h、进水p H为7.5、反应温度在26~29℃时,COD和氨氮去除率均能稳定在85%以上;对氨氮去除效果较差的反应器,适当添加K+、Ca2+、Mg2+可以取得一定的改善作用,其中K+对Na+和NH4+双重毒性抑制的拮抗效应最明显;经参数优化后的SBR反应器对不同污泥负荷和盐度负荷具有较好的适应能力,受到冲击后COD和氨氮去除率均能在2~3个运行周期内恢复至90%以上。  相似文献   

5.
以味精厂废水厌氧污泥混合普通活性污泥作为接种污泥,采用味精废水在SBR反应器内培养好氧颗粒污泥,通过预曝气调整进水负荷,经95 d成功培养出好氧颗粒污泥。培养出的颗粒污泥呈黄色,轮廓整齐,平均粒径为0.5 mm,对COD和氨氮的平均去除率高达91.8%和96.6%,反应器内SVI值保持在20mL/g左右,污泥质量浓度达8 000 mg/L左右。  相似文献   

6.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

7.
同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程初步研究   总被引:7,自引:1,他引:7  
研究好氧颗粒污泥的同步硝化反硝化脱氮,寻找消除氮素对水体污染的途径。在反应器中培养了好氧条件下具有同步硝化反硝化功能的颗粒污泥,进行脱氮过程研究。好氧颗粒污泥为无载体结构,直径2~3 mm,其构成松隙,具有厌(兼)氧与好氧微生物生长代谢的环境;反应液中氨氮浓度为201 mg·L-1时,6 h反应周期内氨完全被氧化,出水中检测不到NO2--N,仅残留2 mg·L-1的N03一N,硝化与反硝化两个过程完成了脱氮反应,颗粒污泥中存在硝化细菌和反硝化细菌;改变反应器中进水有机物浓度,发现COD浓度越大,氮去除率越低,硝化细菌在高有机物浓度下反应活性受抑制,自养硝化细菌竞争氧及其他营养物质的能力弱于异养细菌;在好氧条件下(4 mgO2·L-1),进水中不加有机碳源,反应6 h后NH4+-N去除率达75%,反应过程中pH值下降,说明颗粒污泥中硝化细菌为自养型,硝化反应产酸降低反应器中pH值;在厌氧条件下,进水COD和NO3--N浓度分别为227.25 mg·L-1和103.63 mg·L-1,反应结束后,NO3--N去除率为74%,反应过程中pH值呈上升趋势,证明了好氧颗粒污泥中存在厌氧反硝化细菌,且反硝化细菌生长于颗粒污泥内部的厌氧区域,反硝化产碱使反应液pH值上升。  相似文献   

8.
对膨胀颗粒污泥床(EGSB)反应器在低温(10~15℃)条件下的运行状况和污泥特性进行研究.结果表明,EGSB反应器在10~15℃的低温条件下能够稳定高效运行.当进水COD质量浓度低至114mg/L或高达3600mg/L(有机负荷高达23kg COD·m-3·d-1)时,COD去除率均能维持在70%左右.与中温(32~35℃)相比,低温时颗粒污泥的沉速相对较低,但不低于15m/h,不会被冲出反应器而造成污泥流失.低温时,颗粒污泥的产甲烷活性明显降低,COD去除率也明显降低,但液体上升流速的提高能改善泥水的传质效果,提高COD去除率.在HRT=0.9h、液体上升流速Vup=3.0m/h左右的运行条件下,反应器内温度由35℃降到15℃时,K由0.391 × 103降到0.107×103,COD去除率由84.32%降到68.9%.但当Vup由3.0m/h提高到4.2m/h时,K由0.107×103提高到0.254×103,COD去除率也由68.9%提高至76.7%.低温时,EGSB反应器的抗温度冲击能力很强.低浓度时,EGSB反应器的抗pH冲击能力不强,但随着进水COD浓度的提高,其抗DH冲击能力逐渐增强.EGSB反应器在低温低浓度条件下运行时需添加碱度以维持反应器内适宜的pH值.  相似文献   

9.
以开封市西区污水处理厂剩余污泥为原料,在酸性条件下添加十六烷基三甲基溴化铵(CTAB)制备了改性污泥吸附剂。通过静态吸附实验考察了污泥改性前后对Cr(VI)废水的吸附性能。结果表明,最佳改性条件为在0.6 mg/L的HCl溶液中,按液固比为20∶1加入污泥,控制温度95℃以上添加1%的CTAB,反应5 h;SEM,BET分析表明,污泥改性后其表面以及孔洞内变得更加粗糙和疏松,污泥BET比表面积增大了2.3倍,总孔容增大了1.7倍,红外光谱表明CTAB基团嫁接到污泥结构中;当Cr(VI)初始质量浓度20 mg/L、最佳pH为2.0、反应温度25℃,改性吸附剂投加量为8.0 g/L、吸附0.5 h后,Cr(VI)的去除率可达到91.3%,去除率比改性前增大了53.5%。  相似文献   

10.
利用丝光沸石吸附高浓度氨氮的研究   总被引:8,自引:0,他引:8  
实验研究了丝光沸石对高浓度氨氮的吸附行为,考察了沸石投加量、温度、吸附时间、氨氮浓度、溶液pH值以及Ca2 、Mg2 竞争阳离子对丝光沸石吸附高浓度氨氮的影响,绘制了丝光沸石的吸附等温线.结果表明,在投加250 g/L丝光沸石,pH值6.5,温度25 ℃,吸附时间3 h的条件下,丝光沸石对高浓度氨氮的去除率可达90%以上.Ca2 、Mg2 竞争阳离子在一定程度上抑制丝光沸石对氨氮的吸附.丝光沸石对高浓度氨氮的吸附符合Freundlich等温吸附线.丝光沸石对实际养猪污水中800 mg/L的高浓度氨氮的去除率达到80%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号