首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Data from 25 sites were used to evaluate associations between macroinvertebrate assemblages on large woody debris (snags) and environmental variables in the lower San Joaquin and Sacramento River drainages in California as part of the U.S. Geological Survey's National Water Quality Assessment Program. Samples were collected from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 39 taxa for analyses. Only the 31 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis (CCA). TWINSPAN analysis defined four groups of snag samples on the basis of macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics among the groups. These results combined with the results of CCA indicated that mean dominant substrate type, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, percentage of the basin in combined agricultural and urban land uses, and elevation were important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats.  相似文献   

2.
A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these "hazard sites." The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart's distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km(2) region in western North Carolina's Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.  相似文献   

3.
In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.  相似文献   

4.
As human activities influence land cover changes, the environment on human life such as water quality, has been impacted. In particular, huge constructions or reclamation projects are responsible for dramatic land cover changes. The Saemangeum area in South Korea has been one of the largest reclamation projects to progress nearly in two decades. In this study, Landsat-5 Thematic Mapper and Landsat-7 Enhanced Thematic Mapper Plus images were used to classify land cover types in the Saemangeum area. A change detection method was utilized to determine the impacts of the reclamation project. While wetland, grassland, and urban areas were increased, forest, water, and agricultural areas were decreased during the reclamation progress. Water quality analysis related to the land cover changes was conducted to determine the influence of reclamation construction on the environment. Chemical oxygen demand and suspended sediment variability were significantly impacted by the sea current changes after the dyke construction. On the contrary, water temperature and dissolved oxygen were affected by the seasonal influences rather than the reclamation construction. Total nitrogen and total phosphorus were influenced by the fertilizers and pesticides as a result of agricultural activity. The trends of suspended sediment from Landsat images were similar with those from the ground observation sites and also impacted by the dyke construction.  相似文献   

5.
Little is known about the importance of landscape and land cover to the implementation and performance of agricultural conservation projects designed to improve stream quality. In our study, we addressed the potential importance of landscape and land cover to conservation projects by measuring variation across 191 μ-basins (100–2400 ha) and integrating the observed variation into a study design aimed at determining the effectiveness of conservation projects. Our findings indicate that there are strong gradients across which landscape and land cover attributes vary. Land cover varied along a gradient of agricultural intensity, basin morphometry across gradients of stream closure and basin size, basin substrate was described by variation in drumlin formation, glacial landform type, and soil drainage, while agricultural conservation projects varied according to the level of project implementation. Correlation of these gradients found several associations between landscape and land cover, indicating that agricultural intensity was being constrained predominantly by drumlin formation and glacial landform type. Landscape and land cover did not appear to be determining factors in the implementation of conservation projects by land owners. Based on these findings we chose 32 μ-basins which represented the variability along each of the defined gradients for further study. We conclude that landscape scale variables demonstrate important variation and covariation that can and should be integrated into study designs for the assessment of streams and human activities affecting streams.  相似文献   

6.
Different land uses affect the characteristics of a hydrographic basin, reflected in the river water quality, and consequently affecting the aquatic biota. The benthic community closely reflects the alterations caused by different human activities. In this study, the effects of different land uses were evaluated by analysis of the benthic community structure in streams with urban, agricultural and pasturage influences, as well as areas in better-conserved regions. The abiotic parameters showed distinct seasonal variability, which did not occur with the benthic organisms. A degradation gradient was observed among the study sites, in the headwaters-agriculture-pasture-urban direction. By the CCA its possible to observe that the density of organisms tended to increase along this gradient, whereas richness, diversity, evenness, and EPT families decreased. The most intense effects of land use on the benthic community composition, richness, and diversity were observed in urban areas (F (1,4) = 16.0, p = 0.01; F (1,4) = 8.97, p = 0.04; respectively). In conclusion a trend in the benthic community is observed in to predict alterations caused for the different land uses, mainly, when the source point pollution, as the case of urban area.  相似文献   

7.
Rapid and unplanned urbanization and industrialization are the main reasons of environmental problems. If urban growth is not based on resource sustainability criteria and urban plans are not applied, natural and human resources are damaged dramatically. In this study, land use change and urban expansion in Edremit region of Turkey is determined by means of remote sensing techniques between 1971 and 2002. To improve the accuracy of land use/cover maps, the contribution of SAR images to optic images in defining land cover types was investigated. To determine the situation of land use/cover types in 2002 accurately, Landsat-5 images and Radarsat-1 images were fused, and the land use/cover types were defined from the fused images. Comparisons with the ground truth reveal that land use maps generated using the fuse technique are improved about 6% with an accuracy of 81.20%. To define land use types and urban expansion, screen digitizing and classification methods were used. The results of the study indicate that the urban areas have been increased 1,826 ha across the agricultural fields which are in land use capability classes of I and II, and significant environmental changes such as land degradation and degeneration of ground water quality occurred.  相似文献   

8.
The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.  相似文献   

9.
In this report, predictions of the species that were expected to occur at stream sites were generated and probable stressors to fish species that were predicted to occur but were absent were diagnosed. Predictions were generated based on the hierarchical screening method of Smith and Powell (1971, Am. Mus. Novit. 2458, 1–30), using fish abundance in conjunction with 25 environmental variables at 895 sites. The sites were sampled throughout Maryland and represent the entire range of environmental quality from severely degraded to minimally degraded. Stressor variable values that exceeded tolerance thresholds for species that were expected to occur, but were absent, were considered to be probable stressors. This method was tested for efficacy in stream site assessments and stressor diagnosis using an independent data set. Sites that were classified as degraded according to the IBI and to non-biological criteria had fewer predicted species present compared to minimally influenced sites, indicating that the proportion of predicted species present accurately represents the biological integrity of a stream site. The nine stressors that were applied to the test data set accounted for species absences in 43.7% of degraded sites. Impervious land cover was the most common stressor identified. In addition to assessing stream biological integrity and identifying stressors to fish species, this approach also provides tolerance thresholds for predicted fish species that are useful endpoints necessary to plan effective restoration of fish species in Maryland.  相似文献   

10.
不同土地利用对溪流大型底栖无脊椎动物群落的影响   总被引:1,自引:0,他引:1  
2010年4月调查了钱塘江中游区域29个样点的水环境特征和底栖动物。聚类排序将样点分为参照、农业和城镇3组,相似性分析表明不同组间底栖动物群落有显著差异(r=0.863,P=0.001)。环境因子的主成分分析表明,研究区域主要的环境胁迫是农业和城镇用地及其引起的水质变化,并能较好解释组间物种差异的关键环境胁迫因子为农业用地比例、城镇用地比例、溶解氧、总氮和平均底质得分(Rho=0.568,P=0.001)。底栖动物参数(总分类单元数、Shannon-Weaver多样性指数、BI指数和丰富度指数)和k-优势度曲线显示农业和城镇组的生物完整性遭到很大程度的破坏,且农业组较城镇组严重。  相似文献   

11.
The Brazos River, the second largest basin in Texas, represents one of the most highly developed river systems in the state. Thirty-nine reservoirs with capacities greater than 5,000 acre-feet are currently in operation in the basin. Impacts on stream ecosystems are evidenced by changes in flow regimes and resulting changes in fish assemblages over the past 50 years. These changes have been widely attributed to human impacts, through the construction of dams, diversion of water supplies for agricultural and municipal uses, and land use change. However, streamflow regimes result from a complex mix of drivers that include climate, topography, land cover, land use practices, reservoir management practices, dam releases, and water consumption patterns, making determination of anthropogenic impacts problematic. This study quantifies changes in flow regime and probable historical drivers including precipitation, dam construction, population growth, and changing water demand in the Brazos River basin over the past 100 years. Results indicate that the climate of the basin has been relatively stable over the study period, while large-scale changes in human population densities and intense water resources development are correlated with impacts on flow regimes, decreasing the frequency and magnitude of high flow events and stabilizing low flows. These changes have resulted in an increase of habitat generalist fish species, a decrease of native obligate riverine fishes, and an overall homogenization of species assemblages. The results of this study indicate the importance of combining ecological data with an assessment of social drivers for a greater understanding of the dynamics of river basin systems.  相似文献   

12.
This paper illustrates the result of land use/cover change in Dhaka Metropolitan of Bangladesh using topographic maps and multi-temporal remotely sensed data from 1960 to 2005. The Maximum likelihood supervised classification technique was used to extract information from satellite data, and post-classification change detection method was employed to detect and monitor land use/cover change. Derived land use/cover maps were further validated by using high resolution images such as SPOT, IRS, IKONOS and field data. The overall accuracy of land cover change maps, generated from Landsat and IRS-1D data, ranged from 85% to 90%. The analysis indicated that the urban expansion of Dhaka Metropolitan resulted in the considerable reduction of wetlands, cultivated land, vegetation and water bodies. The maps showed that between 1960 and 2005 built-up areas increased approximately 15,924 ha, while agricultural land decreased 7,614 ha, vegetation decreased 2,336 ha, wetland/lowland decreased 6,385 ha, and water bodies decreased about 864 ha. The amount of urban land increased from 11% (in 1960) to 344% in 2005. Similarly, the growth of landfill/bare soils category was about 256% in the same period. Much of the city's rapid growth in population has been accommodated in informal settlements with little attempt being made to limit the risk of environmental impairments. The study quantified the patterns of land use/cover change for the last 45 years for Dhaka Metropolitan that forms valuable resources for urban planners and decision makers to devise sustainable land use and environmental planning.  相似文献   

13.
I developed a fish-based index of biotic integrity (IBI) to assess environmental quality in intermittent headwater streams in Wisconsin, USA. Backpack electrofishing and habitat surveys were conducted four times on 102 small (watershed area 1.7–41.5 km2), cool or warmwater (maximum daily mean water temperature ≥22 C), headwater streams in spring and late summer/fall 2000 and 2001. Despite seasonal and annual changes in stream flow and habitat volume, there were few significant temporal trends in fish attributes. Analysis of 36 least-impacted streams indicated that fish were too scarce to calculate an IBI at stations with watershed areas less than 4 km2 or at stations with watershed areas from 4–10 km2 if stream gradient exceeded 10 m/km (1% slope). For streams with sufficient fish, potential fish attributes (metrics) were not related to watershed size or gradient. Seven metrics distinguished among streams with low, agricultural, and urban human impacts: numbers of native, minnow (Cyprinidae), headwater-specialist, and intolerant (to environmental degradation) species; catches of all fish excluding species tolerant of environmental degradation and of brook stickleback (Culaea inconstans) per 100 m stream length; and percentage of total individuals with deformities, eroded fins, lesions, or tumors. These metrics were used in the final IBI, which ranged from 0 (worst) to 100 (best). The IBI accurately assessed the environmental quality of 16 randomly chosen streams not used in index development. Temporal variation in IBI scores in the absence of changes in environmental quality was not related to season, year, or type of human impact and was similar in magnitude to variation reported for other IBI's.  相似文献   

14.
Semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around six metropolitan areas: Atlanta, Georgia; Raleigh-Durham, North Carolina; and Denver-Fort Collins, Colorado, in 2003; and Dallas-Fort Worth, Texas; Milwaukee-Green Bay, Wisconsin; and Portland, Oregon, in 2004 to examine relations between percent urban land cover in watersheds and the occurrence, concentrations, and potential toxicity of hydrophobic compounds. Of the 142 endpoints measured in SPMD dialysates, 30 were significantly (alpha = 0.05) related to the percent of urban land cover in the watersheds in at least one metropolitan area. These 30 endpoints included the aggregated measures of the total number of compounds detected and relative toxicity (Microtox(R) and P450RGS assays), in addition to the concentrations of 27 individual hydrophobic compounds. The number of compounds detected, P450RGS assay values, and the concentrations of pyrogenic polycyclic aromatic hydrocarbons (PAHs) were significantly related to percent urban land cover in all six metropolitan areas. Pentachloroanisole, the most frequently detected compound, was significantly related to urban land cover in all metropolitan areas except Dallas-Fort Worth. Petrogenic PAHs and dibenzofurans were positively related to percent urban land cover in Atlanta, Raleigh-Durham, Denver, and Milwaukee-Green Bay. Results for other endpoints were much more variable. The number of endpoints significantly related to urban land cover ranged from 6 in Portland to 21 Raleigh-Durham. Based on differences in the number and suite of endpoints related to urban intensity, these results provide evidence of differences in factors governing source strength, transport, and/or fate of hydrophobic compounds in the six metropolitan areas studied. The most consistent and significant results were that bioavailable, aryl hydrocarbon receptor agonists increase in streams as basins become urbanized. Potential toxicity mediated by this metabolic pathway is indicated as an important factor in the response of aquatic biota to urbanization.  相似文献   

15.
Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.  相似文献   

16.
A study of the area, including Rosetta city and the estuary of the river Nile (Rosetta branch), has been carried out for assessment of the impact of sea level rise (slr). A geographic information system (GIS) has been built including layers of land use, topography, archeological sites, land cover and population. Analysis of data has been carried out to assess vulnerability of various land use and land cover classes to the impact of sea level rise.Because the area under study has geomorphic relief profiles just over the sea level, inundation of total land could reach 26% of total study area due to only half a meter rise in sea level. This lost area includes 32% of urban clusters mainly used for human shelter and contains 52% of present monuments, 25% of valuable high quality dense palm trees cultivation, 75% of beaches and 19% of lands suitable, 25% of valuable high quality dense palm trees cultivation, 75% of beaches and 19% of lands suitable for agricultural reclamation (although suffering from salt water intrusion and soil salinization). This is expected to cause a significant impact on the present population, economic activities, total regional revenue, and also on tourism. At 1.1 m sea level rise, 72% to total study area could be inundated. This area contains all beaches, half of the palm cultivation, 43% of total urban clusters, which includes 81% of the monumental sites and historic buildings.Other environmental problems such as solid waste management, sanitary disposal network, deteriorating conditions of some monumental structures, in addition to the sea level rise act negatively on the environmental quality of the urban community. Future plans for urban expansion in the area must be studied carefully in order to preserve valuable palm lands and maintain and protect monuments and historic sites which help the promotion of tourism. An environmental management program is essential for upgrading tourism, promoting urban development and protecting coastal lands.  相似文献   

17.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

18.
19.
20.
Aquatic ecosystems around the world, lake, estuaries and coastal areas are increasingly impacted by anthropogenic pollutants through different sources such as agricultural, industrial and urban discharges, atmospheric deposition and terrestrial drainage. Lake Victoria is the second largest lake in the world and the largest tropical lake. Bordered by Tanzania, Uganda, and Kenya, it provides a livelihood for millions of Africans in the region. However, the lake is under threat from eutrophication, a huge decline in the number of native fish species caused by several factors including loss of biodiversity, over fishing and pollution has been recently documented. Increasing usage of pesticides and insecticides in the adjacent agricultural areas as well as mercury contamination from processing of gold ore on the southern shores are currently considered among the most emergent phenomena of chemical contamination in the lake. By the application of globally consistent and comprehensive geospatial data-sets based on remote sensing integrated with information on heavy metals accumulation and insecticides exposure in native and alien fish populations, the present study aims at assessing the environmental risk associated to the contamination of the Lake Victoria water body on fish health, land cover distribution, biodiversity and the agricultural area surrounding the lake. By the elaboration of Landsat 7 TM data of November 2002 and Landsat 7 TM 1986 we have calculated the agriculture area which borders the Lake Victoria bay, which is an upland plain. This process has greatly enhanced nutrient loading to the soil, which is subsequently transported to the lake by rain or as dry fall. All the data has been insert in the Geographical information System (ARCGIS) to be upgraded and consulted. Heavy metals in fish fillets showed concentrations rather low except for mercury being higher than others as already described in previous investigations. In the same tissue, cholinesterases activity (ChE) as an indicator of insecticides exposure showed significant differences among fish species in both activity and sensitivity of selected inhibitor insecticides. This integrated approach aims at identifying and quantifying selected aquatic environmental issues which integrated with monitoring techniques such as contaminant concentrations and biological responses to insecticides exposure in fish populations will provide a scientific basis for aquatic zones management and assist in policy formulations at the national and international levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号