首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic compartment model was investigated to describe 14C accumulation in rice plants exposed to atmospheric 14C with temporally changing concentrations. In the model, rice plants were regarded to consist of three compartments: the ear and the mobile and immobile carbon pools of the shoot. Photosynthetically fixed carbon moves into the ear and the mobile carbon pool, and these two compartments release a part of this carbon into the atmosphere by respiration. Carbon accumulated in the mobile carbon pool is redistributed to the ear, while carbon transferred into the immobile carbon pool from the mobile one is accumulated there until harvest. The model was examined by cultivation experiments using the stable isotope, 13C, in which the ratios of carbon photosynthetically fixed at nine times during plant growth to the total carbon at the time of harvest were determined. The model estimates of the ratios were in relatively good agreement with the experimental observations, which implies that the newly developed compartment model is applicable to estimate properly the radiation dose to the neighboring population due to an accidental release of 14C from nuclear facilities.  相似文献   

2.
Depth profiles of the specific activities of (14)C and carbon isotopic compositions (Delta(14)C, delta(13)C) in soil organic matter and soil CO(2) in a Japanese larch forest were determined. For investigating the transport of CO(2) in soil, specific activities of (14)C, Delta(14)C and delta(13)C in the organic layer, and atmospheric CO(2) in the same forest area were also determined. The specific activity of (14)C and Delta(14)C in the soil organic matter decreased with the increase in depth of 0-60cm, while that of soil CO(2) did not vary greatly at a soil depth of 13-73cm and was more prevalent than that of atmospheric CO(2). Peaks of specific activities of (14)C appeared at the depth of 0-4cm and Delta(14)C values were positive in the depth range from 0 to 15cm. These results suggest that the present soil at a depth of 0-4cm had been produced from the mid-1950s up until 1963, and the bomb C had reached the depth of 15cm in the objective soil area. The delta(13)C in the soil organic matter increased at the depth of 0-55cm, while that of soil CO(2) collected on 8 November 2004 decreased rapidly at the depth of 0-13cm and only slightly at the depth of 53-73cm. By combining the Delta(14)C and delta(13)C of the respective components and using the Keeling plot approach it was made clear that the entering of atmospheric CO(2) showed a large contribution to soil CO(2) at the depth of 0-13cm and a negligible contribution at the depth of 53-73cm for soil air collected on 8 November 2004. Respiration of live roots was presumed to be the main source of soil CO(2) at the depth of 53-73cm on 8 November 2004.  相似文献   

3.
The atmospheric concentrations of 137Cs, 210Pb, and 7Be were measured over a three-year period at two research stations located less than 12 km apart and at different altitudes (puy de Dôme, 1465 m a.s.l. and Opme, 660 m a.s.l., France). Seasonal trends in all radionuclides were observed at both stations, with high concentration measured during the summer and low concentrations during the winter. The 210Pb concentrations at both stations were similar to each other. Higher concentrations of both 7Be and 137Cs were measured at puy de Dôme than at Opme. These observations can be explained by the stratospheric and upper tropospheric sources of 7Be and the long-range transportation of 137Cs at high altitudes. Air mass origins during sampling periods were classified into several groups by their route to the stations (marine, marine modified, continental and mediterranean). We observed that 7Be concentrations were constant regardless of the air mass origins, unlike 137Cs and 210Pb concentrations that increased when influenced by continental air masses. Higher 7Be concentrations were observed when air masses were arriving from the upper troposphere than from the boundary layer, the opposite was observed for 137Cs. The temporal trend in concentrations of 7Be shows good agreement with previous modelling studies suggesting that there is a good understanding of its sources and the atmospheric vertical mixing of this radionuclide. The sources and mixing of 210Pb, however, seem to be more complex than it appeared to be in previous modelling studies.  相似文献   

4.
This work is devoted to the reconstruction of time-dependent radioactive contamination fields in the territory of Ukraine in the initial period of the Chernobyl accident using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The modelling results were compared with available 137Cs air and ground contamination measurement data. The 137Cs atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The detailed scenario of the release from the accidental unit of the Chernobyl nuclear plant has been built (including time-dependent radioactivity release intensity and time-varied height of the release). The calculations have enabled to explain the main features of spatial and temporal variations of radioactive contamination fields over the territory of Ukraine on the regional scale, including the formation of the major large-scale spots of radioactive contamination caused by dry and wet deposition.  相似文献   

5.
Monitoring of 239,240Pu in surface air of Prague started in 1986 in connection with the Chernobyl accident. Measurable activities of 10–28 μBq m−3 were found from 29 April 1986 to 5 May 1986. In the most of the monitoring periods of 1987–1996, activities of 239,240Pu in air were not measurable. Positive values for 239,240Pu and 238Pu in air could be obtained after installation of an aerosol sampler with higher flow-rate in 1997. Activity concentrations of 239,240Pu and 238Pu in Prague air in the most of quarters of 1997–2006 were in the range 0.53–5.06 and <0.16–1.10 nBq m−3, respectively. Seasonal fluctuations can be found in content of 239,240Pu in air. Activity ratios of 238Pu/239,240Pu in air are higher than those in top soil, so it can be supposed that 238Pu is coming to air of Prague also from other sources than resuspension of fallout from atmospheric nuclear tests.  相似文献   

6.
Surface air concentrations of 7Be at a number of stations in Oceania show a distinct annual cycle. We apply a sinusoidal model to describe this cycle. The results show that peak 7Be concentrations in surface air occur during early spring at tropical latitudes and during mid-to-late summer at middle latitudes. Comparison with available 90Sr surface air data for the southern hemisphere indicates that stratosphere-to-troposphere exchange is an active atmospheric process controlling the 7Be annual cycle throughout the Oceania region. Vertical transport of air within the troposphere also seems to influence the observed annual cycle. Seasonality in rainfall is not thought to control the annual cyclic behaviour of 7Be in surface air.  相似文献   

7.
Carbon-14 is a particularly interesting radionuclide from the perspective of dose estimation. Many nuclear facilities, including power reactors, release 14C into the environment, and much of this is as 14CO2. This mixes readily with stable CO2, and hence enters the food chain as fundamental biomolecules. This isotopic mixing is often used as the basis for dose assessment models. The present model was developed for the situation of 14C releases to surface waters, where there are distinct changes in the water 14C activity concentrations throughout the year. Complete isotopic mixing (equilibrium) cannot be assumed. The model computes the specific activity (activity of 14C per mass of total C) in water, phytoplankton, fish, crops, meat, milk and air, following a typical irrigation-based food-chain scenario. For most of the biotic compartments, the specific activity is a function of the specific activity in the previous time step, the specific activity of the substrate media, and the C turnover rate in the tissue. The turnover rate is taken to include biochemical turnover, growth dilution and mortality, recognizing that it is turnover of C in the population, not a tissue or an individual, that is relevant. Attention is paid to the incorporation of 14C into the surface water biota and the loss of any remaining 14CO2 from the surface water-air interface under its own activity concentration gradient. For certain pathways, variants in the conceptual model are presented, in order to fully discuss the possibilities. As an example, a new model of the soil-to-plant specific activity relationship is proposed, where the degassing of both 14C and stable C from the soil is considered. Selection of parameter values to represent the turnover rates as modeled is important, and is dealt with in a companion paper.  相似文献   

8.
Fukushima fallout in Northwest German environmental media   总被引:1,自引:0,他引:1  
Traces of short- and long-lived fallout isotopes (131I, 134Cs and 137Cs) were found in environmental samples collected in Northwest Germany (rain water, river sediment, soil, grass and cow milk) from March to May 2011, following the radioactivity releases after the nuclear accident in Fukushima, Japan. The measured concentrations are consistent with reported concentrations in air, amount of rainfall and expected values applying simple radioecological models. The [134Cs]/[137Cs] ratio reported for air (about 1) allows for discrimination between “recent” and “old” 137Cs. Expected 136Cs values fell below the detection limits of the instrumentation, despite large sample masses and long counting times.  相似文献   

9.
Carbon-14 is a particularly interesting radionuclide from the perspective of dose estimation because it mixes readily with stable CO2, and hence enters the food-chain as fundamental biomolecules. A model was developed for the situation of 14C releases to surface waters, where there are distinct changes in the water 14C activity concentrations throughout the year. The model computes the specific activity in water, phytoplankton, fish, crops, meat, milk and air, following a typical irrigation-based food-chain scenario. This paper describes the derivation of the required 14C-specific parameter values. Many of the key parameters are not commonly measured, at least not in the context of dose assessment. Thus, inference from other sources of data was required, and this is the scientific contribution described in this paper. The best estimates and appropriate measures of statistical dispersion are provided. This required consideration of both the temporal and spatial averaging domains to ensure they were correct for parameters as defined in the model. The model coupled with these parameter values represents several new developments for modelling 14C transfers.  相似文献   

10.
The European Variant Berkeley Trent (EVn-BETR) multimedia fugacity model is used to test the validity of previously derived emission estimates and predict environmental concentrations of the main decabromodiphenyl ether congener, BDE-209. The results are presented here and compared with measured environmental data from the literature. Future multimedia concentration trends are predicted using three emission scenarios (Low, Realistic and High) in the dynamic unsteady state mode covering the period 1970–2020. The spatial and temporal distributions of emissions are evaluated. It is predicted that BDE-209 atmospheric concentrations peaked in 2004 and will decline to negligible levels by 2025. Freshwater concentrations should have peaked in 2011, one year after the emissions peak with sediment concentrations peaking in 2013. Predicted atmospheric concentrations are in good agreement with measured data for the Realistic (best estimate of emissions) and High (worst case scenario) emission scenarios. The Low emission scenario consistently underestimates measured data. The German unilateral ban on the use of DecaBDE in the textile industry is simulated in an additional scenario, the effects of which are mainly observed within Germany with only a small effect on the surrounding areas. Overall, the EVn-BTER model predicts atmospheric concentrations reasonably well, within a factor of 5 and 1.2 for the Realistic and High emission scenarios respectively, providing partial validation for the original emission estimate. Total mean MEC:PEC shows the High emission scenario predicts the best fit between air, freshwater and sediment data. An alternative spatial distribution of emissions is tested, based on higher consumption in EBFRIP member states, resulting in improved agreement between MECs and PECs in comparison with the Uniform spatial distribution based on population density. Despite good agreement between modelled and measured point data, more long-term monitoring datasets are needed to compare predicted trends in concentration to determine the rate of change of POPs within the environment.  相似文献   

11.
The regional environmental radiological effects were assessed for the past 25-year operation of the Tokai Reprocessing Plant (TRP). The assessment was basically performed with the environmental radiological monitoring data around the TRP. For the environmental monitoring, various kinds of terrestrial and marine samples including air dust, surface soil, polished rice grain, leafy vegetable, milk, seawater, seabed sediments, fish, shellfish and seaweed were collected in the surrounding environment of the TRP. Radionuclides such as (3)H, (14)C, (90)Sr, (137)Cs and (239,240)Pu in the environmental samples were determined by radiochemical methods. However, they showed no significant short-term increase or long-term accumulation of radionuclides discharged from the TRP. Therefore, the public dose was evaluated using the mathematical models and the discharge data of radionuclides. The estimated annual effective dose for the public was about 0.1% of the annual effective dose limit recommended by the ICRP. The assessment showed that there were no significant radiological effects on the environment and the public due to the 25-year operation of the TRP.  相似文献   

12.
The spatial and temporal distributions of the anthropogenic radionuclides 137Cs and 90Sr, originating from nuclear bomb testing, the Sellafield reprocessing plant in the Irish Sea (UK), and from the Ob and Yenisey river discharges to the Arctic Ocean, have been simulated using the global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The physical model is forced with daily atmospheric re-analysis fields for the period of 1948–1999. Comparison of the temporal evolution of the observed and the simulated concentrations of 90Sr has been performed in the Kara Sea. The relative contributions of the different sources on the temporal and spatial distributions of the surface 90Sr are quantified over the simulated period. It follows that the Ob river discharge dominated the surface 90Sr over most of the Arctic Ocean and along the eastern and western coasts of Greenland before 1960. During the period of 1980–1990, the atmospheric fallout and the Ob river discharge were equally important for the 90Sr distribution in the Arctic Ocean. Furthermore, an attempt has been made to explore the possible dispersion of accidental released 90Sr from the Ob and Yenisey rivers under a global warming scenario (2 × CO2). The difference between the present-day and the global warming scenario runs indicates that more of the released 90Sr from the Ob and Yenisey rivers is confined to the Arctic Ocean in the global warming run, particularly in the near coastal, non-European part of the Arctic Ocean.  相似文献   

13.
Radiocarbon variations in the atmospheric CO(2) with attenuating amplitudes and decreasing mean values with typical maxima in summer and minima in winter have been observed since 1967 in two localities of Slovakia, in Bratislava and Zlkovce, situated about 60 km NE from Bratislava, only 5 km from the Bohunice Nuclear Power Plant (NPP). The (14)C record in Bratislava has been influenced mainly by fossil CO(2) emissions, in contrast to the Zlkovce record which has been more variable, as it has clearly been affected by operation of the Bohunice NPP. However, during specific meteorological conditions with NE transport of air masses to Bratislava, the effect of the Bohunice NPP has been visible in Bratislava as well. Maximum (14)C concentrations (up to 120% above a natural background) were observed around A1 NPP which used CO(2) with admixture of air as a cooling agent. The (14)C concentrations around four pressurized light water reactors were up to 30% above the background. The Delta(14)C values in the heavily polluted atmosphere of Bratislava were up to 10% and at Zlkovce up to 5% lower than the European clean air represented by the Jungfraujoch Delta(14)C data. Later the Delta(14)C values were similar at both sites, and from 2003 they were close to the European clean air levels. The observed Delta(14)C behaviour in the atmosphere provides a unique evidence of decreased fossil fuel CO(2) emissions in the region, as well as the long-term effect of the Bohunice NPP on the Bratislava and Zlkovce stations. The estimated annual radiation doses to the local public due to digestion of radiocarbon contaminated food have been estimated to be around 3 microSv.  相似文献   

14.
In order to investigate the applicability of 212Pb as a tracer for atmospheric transport in the sub-regional scale (few hundred kilometers in horizontal direction and up to ∼1 km by height), we measured the air concentrations of the short-lived radionuclide 212Pb along with the long-lived 7Be and 210Pb near the ground surface. For this purpose, simultaneous observations were continued for several days at three locations: a reference point representative for standard land surface atmosphere conditions, a second location at an altitude 650 m near the reference point, and on a solitary island ∼180 km from the reference point. Measurements of radioactivity in aerosol particle samples collected at intervals of 2-3 h with a high-volume air sampler were performed by extremely low background gamma-ray spectrometry with the use of Ge detectors located at the Ogoya Underground Laboratory. Concentration of 7Be or 210Pb and their variation patterns was found to be similar among the three points during the whole observation period except for moment of the passage of a cold front. The results indicate that distributions of concentrations of the long-lived nuclides were uniform in this range. On the other hand, concentration levels and the variation patterns of the short-lived 212Pb differed greatly from one location to another, reflecting differences in geographical location and altitude of the observation points. Additionally, there were certain indications that observed concentration of 212Pb contained two components: an autogenous component from sources nearby and a heterogenous one from faraway sources carried by atmospheric horizontal transport. Results of this study provide experimental proof that 212Pb can be used as a tracer of sub-regional atmospheric transport.  相似文献   

15.
In this study it was evaluated whether the ECOPATH with ECOSIM software could be used as a platform to facilitate the construction of models and study of transport and accumulation of radionuclides in aquatic food webs. The evaluation was based upon a food web model of carbon (C) and carbon-14 ((14)C) flow for a coastal area in the Baltic Sea, the ECOPATH, the ECOSIM and the ECOTRACE models. The original carbon flows and assumptions were easily incorporated into the ECOPATH and ECOSIM modelling environment. The new model was also well suited to drive a (14)C flow model (ECOTRACE) for each of the organisms included. ECOTRACE estimated steady-state concentrations of (14)C that were between 73 and 142% of the original flows. The results clearly show that there is great potential for a successful development of this approach for integrating scientific knowledge about food webs and radioecological models for aquatic systems.  相似文献   

16.
Atmospheric resuspension of radionuclides can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. A test scenario based on measurements collected after the Chernobyl accident was used to evaluate existing mathematical models for contaminant resuspension from soil, to examine resuspension processes on both local and regional scales, and to investigate the importance of seasonal variations of these processes. Model predictions from 15 participants were compared with measured air concentrations and resuspension factors to investigate and explain the discrepancies both among model predictions and between model predictions and observations and thus to evaluate the predictive capabilities and drawbacks of commonly used generic resuspension models. The empirical models tested can give predictions within an order of magnitude of observations or better if adequately calibrated for site-specific conditions, but they do not describe the process-level events or account for spatial heterogeneity or temporal variations.  相似文献   

17.
Carbon-14 was added to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. The nature of the spike and subsequent monitoring allowed the investigation of both short-term and longer-term processes relevant to evaluating impacts of accidental and routine releases and of solid waste disposal. Data from this experiment were used in the BIOMOVS II program as a validation test for modelling the fate of the 14C added to the lake. Four models were used: (1) a simple probabilistic mass balance model of a lake; (2) a relatively complex deterministic model; (3) a complex deterministic model; and (4) a more complex probabilistic model. Endpoints were 14C concentrations in water, sediment and lake whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the range of the observed data and when uncertainty in model predictions is taken into consideration. The simple lake model did not account for internal recycling of 14C and, in this respect, its predictions were not as realistic as those of the more complex models for concentrations in water. However, the simple model predictions for the 14C inventory remaining in lake sediment were closest to the observed values. Overall, the more complex probabilistic model was the most accurate in simulating 14C concentrations in water and in whitefish but it overestimated 14C retention in the lake sediments, as did the other complex models. Choice of parameter values for transfer rate to sediment and gaseous evasion are important in influencing model predictions. Although predicted concentrations of 14C in fish of dynamic models were more accurate than those using equilibrium bioconcentration factors typically used in assessments, large variability in observed 14C concentrations in whitefish emphasizes the need for a better understanding of the important processes that influence these contaminant concentrations.  相似文献   

18.
A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L.) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P<0.001) with soil arsenic. Median arsenic concentrations varied by 14, 10 and 3 fold for soil, shoot and grain respectively comparing the two regions. The reason for the sharp decline in the magnitude of difference between Gazipur and Faridpur for grain arsenic was due to an exponential decline in the grain/shoot arsenic concentration ratio with increasing shoot arsenic concentration. When the Bangladesh data were compared to EU and US soil-shoot-grain transfers, the same generic pattern could be found with the exception that arsenic was more efficiently transferred to grain from soil/shoot in the Bangladesh grown plants. This may reflect climatic or cultivar differences.  相似文献   

19.
Nuclear power plants release 14C during routine operation mainly as airborne gaseous effluents. Because of the long half-life (5730 years) and biological importance of this radionuclide (it is incorporated in plant tissue by photosynthesis), several countries have monitoring programs in order to quantify and control these emissions. This paper compares the activity of 14C in soils taken within 1 km from a Brazilian nuclear power plant with soils taken within a reference area located 50 km away from the reactor site. Analyses of total carbon, δ13C and 137Cs were also performed in order to understand the local soil dynamics. Except for one of the profiles, the isotopic composition of soil organic carbon reflected the actual forest vegetation present in both areas. The 137Cs data show that the soils from the base of hills are probably allocthonous.  相似文献   

20.
Distribution of cesium (134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10−7 to 10−4 mol l−1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号