首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary (1) When a honey bee follows recruitment dances to locate a new food source, does she sample multiple dances representing different food sources and selectively respond to the strongest dance? (2) Several initial findings suggested that foragers might indeed compare dances. First, dance information is arrayed in the hive in a way that facilitates comparison-making: dances for different flower patches are performed close together in time and space. Second, food-source quality is coded in the dances, in terms of dance length (number of circuits per dance). Third, dances to natural food sources vary in length by more than 2 orders of magnitude, indicating that the quality of natural food sources varies greatly. Fourth, foragers seeking a new food source follow several dances before exiting the hive (though only one dance is followed closely). (3) Nevertheless, a critical test for comparison-making revealed that foragers evidently do not compare dances. A colony was given two feeders that were equidistant from the hive but different in profitability. If foragers do not compare dances, then the proportion of recruits arriving at the richer feeder should match the proportion of dance circuits for the richer feeder. This is the pattern that we found in all 11 trials of the experiment. (4) We suggest that the reason foragers do not compare dances is that a colony's foraging success is greater if its foragers distribute themselves among the various food sources being advertised in the hive than if they crowd themselves on the one, best source. (5) Food-source selection by honey bee colonies is a democratic decision-making process. This study reveals that this selection process is organized to function effectively even though each member of the democracy possesses incomplete information about the available choices. Offprint requests to: T.D. Seeley  相似文献   

2.
Honey bees (Apis mellifera) use the dance language to symbolically convey information about the location of floral resources from within the nest. To figure out why this unique ability evolved, we need to understand the benefits it offers to the colony. Previous studies have shown that, in fact, the location information in the dance is not always beneficial. We ask, in which ecological habitats do honey bee colonies actually benefit from the dance language, and what is it about those habitats that makes communication useful? In this study, we examine the effects of floral distribution patterns on the benefits of dance communication across five different habitats. In each habitat, we manipulated colonies' ability to communicate and measured their foraging success, while simultaneously characterizing the naturally occurring floral distribution. We find that communication is most beneficial when floral species richness is high and patches contain many flowers. These are ecological features that could have helped shape the evolution of the honey bee dance language.  相似文献   

3.
All honeybee species make use of the waggle dance to communicate the direction and distance to both food sources and potential new nest sites. When foraging, all species face an identical problem: conveying information about profitable floral patches. However, profound differences in nesting biology (some nest in cavities while others nest in the open, often on a branch or a cliff face) may mean that species have different requirements when dancing to advertise new nest sites. In cavity nesting species, nest sites are a precise location in the landscape: usually a small opening leading to a cavity in a hollow tree. Dances for cavities therefore need to be as precise as possible. In contrast, when the potential nest site comprises a tree or perhaps seven a patch of trees, precision is less necessary. Similarly, when a food patch is advertised, dances need not be very precise, as floral patches are often large, unless they are so far away that recruits need more precise information to be able to locate them. In this paper, we study the dance precision of the open-nesting red dwarf bee Apis florea. By comparing the precision of dances for food sources and nest sites, we show that A. florea workers dance with the same imprecision irrespective of context. This is in sharp contrast with the cavity-nesting Apis mellifera that increases the precision of its dance when advertising a potential new home. We suggest that our results are in accordance with the hypothesis that the honeybees’ dance communication initially evolved to convey information about new nest sites and was only later adapted for the context of foraging.  相似文献   

4.
Adaptation or constraint? Reference-dependent scatter in honey bee dances   总被引:1,自引:1,他引:0  
The waggle dance of the honey bee is used to recruit nest mates to a resource. Dancer bees, however, may indicate many directions within a single dance bout; we show that this scatter in honey bee dances is strongly dependent on the sensory modality used to determine a reference angle in the dance. Dances with a visual reference are more precise than those with a gravity reference. This finding undermines the idea that scatter is introduced into dances, which the bees could perform more precisely, in order to spread recruits out over resource patches. It also calls into question reported interspecific differences that had been interpreted as adaptations of the dance to different habitats. Our results support a non-adaptive hypothesis: that dance scatter results from sensory and performance constraints, rather than modulation of the scatter by the dancing bee. However, an alternative adaptive hypothesis cannot be ruled out.  相似文献   

5.
The Red Dwarf honeybee (Apis florea) is one of two basal species in the genus Apis. A. florea differs from the well-studied Western Hive bee (Apis mellifera) in that it nests in the open rather than in cavities. This fundamental difference in nesting biology is likely to have implications for nest-site selection, the process by which a reproductive swarm selects a new site to live in. In A. mellifera, workers show a series of characteristic behaviors that allow the swarm to select the best nest site possible. Here, we describe the behavior of individual A. florea workers during the process of nest-site selection and show that it differs from that seen in A. mellifera. We analyzed a total of 1,459 waggle dances performed by 197 scouts in five separate swarms. Our results suggest that two fundamental aspects of the behavior of A. mellifera scouts—the process of dance decay and the process of repeated nest site evaluation—do not occur in A. florea. We also found that the piping signal used by A. mellifera scouts to signal that a quorum has been reached at the chosen site, is performed by both dancing and non-dancing bees in A. florea. Thus, the piping signal appears to serve a different purpose in A. florea. Our results illustrate how differences in nesting biology affect the behavior of individual bees during the nest-site selection process.  相似文献   

6.
Honey bee workers are able to distinguish queen-laid eggs from worker-laid eggs, and remove (‘police’) worker-laid eggs. The cue that police workers use is as yet unidentified but is likely to be a chemical signal. This signal benefits queens for it ensures their reproductive monopoly. It also benefits collective workers because it allows them to raise more closely related queen-laid males than the less-related sons of half sisters. Because both parties benefit from the egg-marking signal, it should be stable over evolutionary time. We show that Apis mellifera workers can distinguish queen-laid from worker-laid eggs of the dwarf honey bee A. florea, a phylogenetically distant species that diverged from the A. mellifera lineage 6–10 mya. However, A. mellifera workers are unable to distinguish worker-laid eggs of A. cerana, a much more recent divergence (2–3 mya). The apparent change in the egg-marking signal used by A. cerana may be associated with the high rates of ovary activation in this species.  相似文献   

7.
Summary Acoustical signals emitted by dancing bees have recently been shown to transmit information about the location of food sources in the western honeybee, Apis mellifera. Towne (1985) reported that in the Asian honeybee species Apis dorsata, which builds a single comb in the open under overhanging rocks or tree branches, sound signals were not emitted by the dancers. This led to the conclusion that acoustical communication is restricted to bees that nest in the dark, like A. mellifera. Here we show that in fact A. dorsata produces dance sounds similar to those emitted by A. mellifera, and that these acoustical signals contain information about distance, direction and profitability of food sources. The acoustical transfer of information has thus evolved independently of nesting in dark cavities. The significance of nocturnal activity in Apis dorsata for the evolution of sound communication is discussed. Correspondence to: W.H. Kirchner  相似文献   

8.
Summary The dance communication of honeybees was studied using the short-winged mutant diminutive wings. The wing area of the mutant is reduced to 67% that of the wild type. This reduction in wing area leads to increases in both the wing beat frequency and the frequency of the sounds emitted during the dances. At the same time the amplitude of the sound signals is reduced. These changes have a strong effect on the recruitment success of the dances, which is reduced to less than 50%. Thus, the acoustical signals emitted by dancing bees play an essential role in the bees' dance communication.  相似文献   

9.
The honey bee dance language, used to recruit nestmates to food sources, is regarded by many as one of the most intriguing communication systems in animals. What were the ecological circumstances that favoured its evolution? We examined this question by creating experimental phenotypes in which the location information of the dances was obscured. Surprisingly, in two temperate habitats, these colonies performed only insignificantly worse than colonies which were able to communicate normally. However, foraging efficiency was substantially impaired in an Asian tropical forest following this manipulation. This indicates that dance language communication about food source locations may be important in some habitats, but not in others. Combining published data and our own, we assessed the clustering of bee forage sites in a variety of habitats by evaluating the bees’ dances. We found that the indicated sites are more clustered in tropical than in temperate habitats. This supports the hypothesis that in the context of foraging, the dance language is an adaptation to the particular habitats in which the honey bees evolved. We discuss our findings in relation to spatial aggregation patterns of floral food in temperate and tropical habitats.  相似文献   

10.
This study views a honey bee swarm as a supraorganismal entity which has been shaped by natural selection to be skilled at choosing a future home site. Prior studies of this decision-making process indicate that swarms attempt to use the best-of-N decision rule: sample some number (N) of alternatives and then select the best one. We tested how well swarms implement this decision rule by presenting them with an array of five nest boxes, only one of which was a high-quality (desirable) nest site; the other four were medium-quality (acceptable) sites. We found that swarms are reasonably good at carrying out the best-of-N decision rule: in four out of five trials, swarms selected the best site. In addition, we gained insights into how a swarm implements this decision rule. We found that when a scout bee returns to the swarm cluster and advertises a potential nest site with a waggle dance, she tunes the strength of her dance in relation to the quality of her site: the better the site, the stronger the dance. A dancing bee tunes her dance strength by adjusting the number of waggle-runs/dance, and she adjusts the number of waggle-runs/dance by changing both the duration and the rate of her waggle-run production. Moreover, we found that a dancing bee changes the rate of her waggle-run production by changing the mean duration of the return-phase portion of her dance circuits. Differences in return-phase duration underlie the impression that dances differ in liveliness. Although a honey bee swarm has bounded rationality (e.g., it lacks complete knowledge of the possible nesting sites), through its capacity for parallel processing it can choose a nest site without greatly reducing either the breadth or depth of its consideration of the alternative sites. Such thoroughness of information gathering and processing no doubt helps a swarm implement the best-of-N decision rule.  相似文献   

11.
Returning honey bee foragers perform waggle dances to inform nestmate foragers about the presence, location and odour of profitable food sources and new nest sites. The aim of this study is to investigate how the characteristics of waggle dances for natural food sources and environmental factors affect dance follower behaviour. Because food source profitability tends to decrease with increasing foraging distance, we hypothesised that the attractiveness of a dance, measured as the number of dance followers and their attendance, decreases with increasing distance to the advertised food location. Additionally, we determined whether time of year and dance signal noise, quantified as the variation in waggle run direction and duration, affect dance follower behaviour. Our results suggest that bees follow fewer waggle runs as the food source distance increases, but that they invest more time in following each dance. This is because waggle run duration increases with increasing foraging distance. Followers responded to increased angular noise in dances indicating more distant food sources by following more waggle runs per dance than when angular noise was low. The number of dance followers per dancing bee was also affected by the time of year and varied among colonies. Our results provide evidence that both noise in the message, that is variation in the direction component, and the message itself, that is the distance of the advertised food location, affect dance following. These results indicate that dance followers may pay attention to the costs and benefits associated with using dance information.  相似文献   

12.
Workers in a wild in situ colony of the dwarf honey bee, Apis florea, were observed undertaking the following behavior: liquid foraging, pollen foraging, guarding, stinging, fanning and wagging abdomen. Bees of each behavioral class were separately collected and frozen. Collections were made over a period of 10 days. Random samples of brood and workers were also collected. DNA was extracted from each bee and fingerprinted using a probe of unknown sequence obtained from an A. mellifera genomic library. Patterns of fingerprints (Fig. 1) were dissimilar among behavioral classes (Tables 1 and 2), strongly suggesting a genetic component to division of labor in this species. This result supports similar findings in A. mellifera in a species that is not troubled by many of the experimental difficulties inherent in A. mellifera. Correspondence to: B.P. Oldroyd  相似文献   

13.
Nest site selection in the open-nesting honeybee Apis florea   总被引:1,自引:0,他引:1  
We studied nest site selection by swarms of the red dwarf honeybee, Apis florea. By video recording and decoding all dances of four swarms, we were able to determine the direction and distances indicated by 1,239 dances performed by the bees. The bees also performed a total of 715 nondirectional dances; dances that were so brief that no directional information could be extracted. Even though dances converged over time to a smaller number of areas, in none of the swarms did dances converge to one site. As a result, even prior to lift off, bees performed dances indicating nest sites in several different directions. Two of four swarms traveled directly in what seemed to be the general direction indicated by the majority of dances in the half hour prior to swarm lift off. The other two traveled along circuitous routes in the general direction indicated by the dances. We suggest that nest site selection in A. florea has similar elements to nest site selection in the better-studied Apis mellifera. However, the observation that many more locations are indicated by dances prior to lift off also shows that there are fundamental differences between the two species.  相似文献   

14.
Honey bee foragers as sensory units of their colonies   总被引:5,自引:0,他引:5  
Forager honey bees function not only as gatherers of food for their colonies, but also as sensory units shaped by natural selection to gather information regarding the location and profitability of forage sites. They transmit this information to colony members by means of waggle dances. To investigate the way bees transduce the stimulus of nectar-source profitability into the response of number of waggle runs, I performed experiments in which bees were stimulated with a sucrose solution feeder of known profitability and their dance responses were videorecorded. The results suggest that several attributes of this transduction process are adaptations to enhance a bee's effectiveness in reporting on a forage site. (1) Bees register the profitability of a nectar source not by sensing the energy gain per foraging trip or the rate of energy gain per trip, but evidently by sensing the energetic efficiency of their foraging. Perhaps this criterion of nectar-source profitability has been favored by natural selection because the foraging gains of honey bees are typically limited by energy expenditure rather than time availability. (2) There is a linear relationship between the stimulus of energetic efficiency of foraging and the response of number of waggle runs per dance. Such a simple stimulus-response function appears adequate because the range of suprathreshold stimuli (max/min ratio of about 10) is far smaller than the range of responses (max/min ratio of about 100). Although all bees show a linear stimulus-response function, there are large differences among individuals in both the response threshold and the slope of the stimulus-response function. This variation gives the colony a broader dynamic range in responding to food sources than if all bees had identical thresholds of dance response. (3) There is little or no adaptation in the dance response to a strong stimulus (tonic response). Thus each dancing bee reports on the current level of profitability of her forage site rather than the changes in its profitability. This seems appropriate since presumably it is the current profitability of a forage site, not the change in its profitability, which determines a site's attractiveness to other bees. (4) The level of forage-site quality that is the threshold for dancing is tuned by the bees in relation to forage availability. Bees operate with a lower dance threshold when forage is sparse than when it is abundant. Thus a colony utilizes input about a wide range of forage sites when food is scarce, but filters out input about low-reward sites when food is plentiful. (5) A dancing bee does not present her information in one spot within the hive but instead distributes it over much of the dance floor. Consequently, the dances for different forage sites are mixed together on the dance floor. This helps each bee following the dances to take a random sample of the dance information, which is appropriate for the foraging strategy of a honey bee colony since it is evidently designed to allocate foragers among forage sites in proportion to their profitability.  相似文献   

15.
The tremble dance of the honey bee: message and meanings   总被引:1,自引:0,他引:1  
Summary The nectar foragers of a honey bee colony, upon return to the hive, sometimes perform a mysterious behavior called the tremble dance. In performing this dance, a forager shakes her body back and forth, at the same time rotating her body axis by about 50° every second or so, all the while walking slowly across the comb. During the course of a dance, which on average lasts 30 min, the bee travels about the broodnest portion of the hive. It is shown experimentally that a forager will reliably perform this dance if she visits a highly profitable nectar source but upon return to the hive experiences great difficulty finding a food-storer bee to take her nectar. This suggests that the message of the tremble dance is I have visited a rich nectar source worthy of greater exploitation, but already we have more nectar coming into the hive than we can handle. It is also shown experimentally that the performance of tremble dances is followed quickly by a rise in a colony's nectar processing capacity and (see Nieh, in press and Kirchner, submitted) by a drop in a colony's recruitment of additional bees to nectar sources. These findings suggest that the tremble dance has multiple meanings. For bees working inside the hive, its meaning is apparently I should switch to the task of processing nectar, while for bees working outside the hive (gathering nectar), its meaning is apparently I should refrain from recruiting additional foragers to my nectar source. Hence it appears that the tremble dance functions as a mechanism for keeping a colony's nectar processing rate matched with its nectar intake rate at times of greatly increased nectar influx. Evidently the tremble dance restores this match in part by stimulating a rise in the processing rate, and in part by inhibiting any further rise in the intake rate. Correspondence to: T. Seeley  相似文献   

16.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

17.
We conducted experiments designed to examine the distribution of foraging honey bees (Apis mellifera) in suburban environments with rich floras and to compare spatial patterns of foraging sites used by colonies located in the same environment. The patterns we observed in resource visitation suggest a reduced role of the recruitment system as part of the overall colony foraging strategy in habitats with abundant, small patches of flowers. We simultaneously sampled recruitment dances of bees inside observation hives in two colonies over 4 days in Miami, Florida (1989) and from two other colonies over five days in Riverside, California (1991). Information encoded in the dance was used to determine the distance and direction that bees flew from the hive for pollen and nectar and to construct foraging maps for each colony. The foraging maps showed that bees from the two colonies in each location usually foraged at different sites, but occasionally they visited the same patches of flowers. Each colony shifted foraging effort among sites on different days. In both locations, the mean flight distances differed between colonies and among days within colonies. The flight distances observed in our study are generally shorter than those reported in a similar study conducted in a temperate deciduous forest where resources were less dense and floral patches were smaller.  相似文献   

18.
Summary Multiple mating by queens in social Hymenoptera with single locus sex determination may be an adaptation to reduce the effect of genetic load caused by the production of diploid males, if there is a concave relationship between queen fitness and the proportion of diploid male offspring in the colony. In this situation queens should be selected to reduce the variance in the production of diploid male offspring by multiple mating. It has been suggested that this concave relationship occurs in species such as the honey bee, Apis mellifera, in which reproduction occurs near the peak of colony population. This paper suggests that the timing of diploid male removal may influence mating frequency, with early removal of diploid males favoring multiple mating and late removal of diploid males favoring single mating. This idea is explored in two ways. A mathematical model shows that cell use in the brood area of species that rear young in cells will be more efficient with multiple mating. This would favor multiple mating in species, such as the honey bee, in which brood rearing is constrained by the usable area of the brood chamber. Secondly, comparison of polyandrous honey bees (early removal of diploid males as young larvae) with monandrous fire ants, Solenopsis invicta, and Melipona bees (non-removal of immature diploid males) suggests that in the species without diploid male removal, variance reduction may reduce queen fitness. Suggestions are made for testing this hypothesis.  相似文献   

19.
We studied the extent to which worker honey bees acquire information from waggle dances throughout their careers as foragers. Small groups of foragers were monitored from time of orientation flights to time of death and all in-hive behaviors relating to foraging were recorded. In the context of a novice forager finding her first food source, 60% of the bees relied, at least in part, on acquiring information from waggle dances (being recruited) rather than searching independently (scouting). In the context of an experienced forager whose foraging has been interrupted, 37% of the time the bees resumed foraging by following waggle dances (being reactivated) rather than examining the food source on their own (inspecting). And in the context of an experienced forager engaged in foraging, 17% of the time the bees initiated a foraging trip by following a waggle dance. Such dance following was observed much more often after an unsuccessful than after a successful foraging trip. Successful foragers often followed dances just briefly, perhaps to confirm that the kind of flowers they had been visiting were still yielding forage. Overall, waggle dance following for food discovery accounted for 12–25% of all interactions with dancers (9% by novice foragers and 3–16% by experienced foragers) whereas dance following for reactivation and confirmation accounted for the other 75–88% (26% for reactivation and 49–62% for confirmation). We conclude that foragers make extensive use of the waggle dance not only to start work at new, unfamiliar food sources but also to resume work at old, familiar food sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号