首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Overwintered and newly co-founded nests of Exoneura bicolor exhibit different grades of sociality. Intra-colony relatedness was estimated for adults and female brood in both nest types using allozyme data and a multiallelic estimator. The higher relatedness among female brood from overwintered nests compared to newly-founded nests is consistent with the difference in sociality between these colony types (semisocial versus quasisocial). However, intra-colony relatedness among adults is higher in cofounded nests than in overwintered nests, suggesting that differences in sociality are determined by benefit/cost ratios associated with non-reproductive strategies, rather than relatedness between interactants. Rapid egg-production in newly founded nests allows eggs to be stockpiled. This reduceds the tasks available to non-reproductives in early phases of colony development and limits the payoffs available for reproductive altruism. It is suggested that the social flexibility characteristic of allodapines is a consequence of communal progressive rearing which allows many benefits from cooperative nesting to be gained without worker sterility.  相似文献   

2.
Guevara J  Avilés L 《Ecology》2007,88(8):2015-2023
Social and subsocial spiders of the genus Anelosimus exhibit an altitudinal pattern in their geographic distribution at tropical latitudes in the Americas. Social species, which capture prey cooperatively, occur primarily in the lowland rain forest and are absent from higher elevations, whereas subsocial species are common at higher elevations but absent from the lowland rain forest. Previous studies have suggested that differences in the size of potential insect prey along altitudinal gradients may explain this pattern as insects were found to be, on average, larger in lowland rain forests than at higher elevations. These studies, however, may have under-sampled the insect size composition of each habitat because only one sampling technique was used. Using a number of collection methods we sampled the insect size composition in the environments of social and subsocial spiders in this genus. We found that the average insect size in lowland rain forest habitats was indeed larger than at high-elevation cloud forests in eastern Ecuador. We also found that, even though the various techniques differed in the size of the insects they captured (visual searching and blacklighting yielding larger insects than beating, sweeping, or malaise trapping), they all caught, on average, larger insects in the lowlands. Overall, spider colonies in the lowlands caught larger prey than did spider colonies at higher elevations, paralleling differences in insect size distribution obtained by the various techniques in their respective environments.  相似文献   

3.
Summary Prolonged toleration of offspring in marmots was hypothesized to be (1) a means of preventing dispersal of undersized young (Barash 1974 a) or more generally (2) continued parental investment, increasing the probability of descendant survival and reproduction (Armitage 1981, 1987). These hypotheses are tested in this paper for one of the most social of marmot species, the alpine marmot. The animals studied lived in groups within territories defended by a dominant male and female, or as floaters lacking a well-defined home range. Offspring did not disperse before sexual maturity at age 2 (Fig. 1). Only territorial females bred, whereas territorial males were not able to monopolize reproduction likewise (Table 2). Dispersers had similar spring mass to nondispersers (Table 4). Hence, hypothesis 1 is not supported, at least not for adult-sized, > 2 years old animals. During their residency, 19% of subordinates obtained their natal territory or a neighboring one (Fig. 2). Long distance dispersal bore a high mortality risk. Thus, toleration of mature offspring could well represent parental investment. Other results, however, suggest additional influences on the timing of dispersal. (i) Males dispersed later than females (Fig. 3), possibly because of mate sharing by territorial males (see Emlen 1982). (ii) The higher mass loss of dispersers during the previous winter indicates that weak animals were forced to leave (Table 5) despite presumably lower chances of becoming territorial (Table 3). (iii) Subordinate animals which could not be the offspring of both territorials present were not more likely to disperse (Fig. 3). (iv) Lower dispersal rates when immatures lived in the group (Fig. 3) may indicate benefits from the subordinates' presence for rearing young.  相似文献   

4.
Summary Social groups of alpine marmots (Marmota marmota) were studied for 7 years. The groups consisted of a territorial pair and up to 18 lower ranking animals of various ages, mostly the pair's offspring (Tables 1, 2). Group members lived in a common home range and always hibernated together in one hibernaculum. Groups with older, subordinate animals experienced slightly higher summer mortality but significantly reduced winter mortality (Fig. 1). Infant winter mortality was further decreased if most older subordinates were potentially their full sibs (Fig. 2). Subordinate group members lost less mass during winter with increasing size of the hibernating group, but this trend was reversed when infants were present. Furthermore, augmented mass loss due to low hibernaculum quality became evident (Fig. 3). Apart from these effects, the presence of infants caused additional mass loss in potential full sibs. The opposite was found in subordinates certainly descending from other parents than those of the infants (Table 3).Winter mortality and mass loss data revealed (i) a general benefit of joint hibernation, (ii) an unavoidable cost of infants' presence to other group members, (iii) that only potential full sibs helped in warming infants, (iv) that helping was energetically expensive and increased infant survival. The evolution of postponed dispersal in ground-dwelling squirrels has been attributed to the direct fitness gained by enhanced reproductive chances of offspring when not expelled from the natal territory (Armitage 1981, 1987, 1988). This study shows that group living in alpine marmots has benefits during winter and indicates the additional importance of kin selection in marmot social evolution.  相似文献   

5.
Alloparental care—the care of other’s offspring—is a key aspect of sociality in many groups of animals. Understanding how this complex behavior arises requires identifying both the selective forces that may favor it, as well as characteristics of particular lineages that facilitate or hinder its evolution. One potential hindrance is the existence of discrimination against foreign offspring, an obstacle that would need to be overcome in order for alloparental care to evolve. In this study, we explored whether offspring discrimination may have constrained the evolution of alloparental care in social spiders in the genus Anelosimus. Social spiders are known for their cooperative behaviors, which include alloparental care. After quantitatively assessing the extent of alloparenting in the care of egg sacs in natural nests of these spiders, we investigated whether discrimination against foreign egg sacs existed in ancestral pre-social species in the genus. We did so by testing for discrimination between a female’s own and foreign egg sacs in three subsocial sister taxa of each social species investigated. We found no detectable evidence of discrimination in the care of egg sacs by female Anelosimus, regardless of level of sociality. We used these data, along with those from previous studies, to infer that a lack of discrimination is likely the ancestral state in the genus Anelosimus. This supports the idea that offspring discrimination was not a constraint on the evolution of alloparental care in social Anelosimus species. We discuss the evolutionary implications of this finding, and suggest that lack of offspring discrimination may have eased the transition from solitary to cooperative breeding.  相似文献   

6.
7.
One of the few mammal species reported to have a mating system of lek promiscuity is the tree-hollow nesting marsupial, the agile antechinus, Antechinus agilis. Past conclusions about its mating system have been based on seasonal changes in social group size, sex-specific nest switching and space use. Thermoregulation has also been suggested as an explanation for variation in social behaviour in this species and its relatives. We tested predictions of the lekking and thermoregulation hypotheses to explain sociality in cavity nesting antechinuses using published data, and new data on brown and subtropical antechinuses. We found that across four species, social group size is negatively correlated with daily minimum temperature, but not with timing of breeding. Females have a matrilineal fission–fusion social system, which continues during the brief mating season, and males range increasingly further throughout their lives, contacting as many females as possible in nests. Males show no indication of fission–fusion sociality. All evidence in species other than A. agilis, and some data on A. agilis, indicate a mating system of scramble polygyny, and not lek promiscuity. We conclude that across species, thermoregulation is the main reason for seasonal variation in nesting group size in both sexes.  相似文献   

8.
Summary Contrary to the expectations of kin selection theory, intracolony relatedness in eusocial insects is often low. We examined the idea that associations of low relatedness (high genetic variability) may be advantageous because of negative frequency-dependent selection on common host phenotypes by rapidly evolving parasites and pathogens. Using the natural host-parasite system of the bumble bee Bombus terrestris and its intestinal trypanosome Crithidia bombi, we investigated the transmission properties of parasites in host groups. Within naturally infested nests and in artificially constructed groups of workers, prevalence of infestation increased with time of exposure (Table 1). The susceptibility of isolated groups of workers to the parasites to which they were exposed differed with identity and natural infestation of their nest of origin (Table 2). In addition, those workers that were related to the individual introducing an infection to their group were more likely to become infested than were unrelated workers (Table 3). Although the bumble bee workers in experimental boxes appeared to differ in behavior toward kin and non-kin, making more physical contacts with kin, we found no discernible relationship between number of physical contacts and prevalence of infestation in a group. Therefore, we conclude that differences in parasite transmission reflected interactions among different host and parasite phenotypes. This system thus demonstrates the factors necessary for negative frequency-dependent selection by parasites on common host phenotypes - variability for susceptibility and infectiousness in host and parasite populations and similarity for these traits among related individuals. If, as we show here, high genetic relatedness within groups enhances parasite transmission, kin directed altruism may increase the risk of contracting parasites and infectious diseases. Therefore, parasites and pathogens may be an important force moderating the genetic structure of social groups. Offprint requests to: J.A. Shykoff at the present address  相似文献   

9.
Summary Genetic relatedness and mating structure of the red ant, Myrmica ruginodis, were studied from a large data set in several natural populations, one of which was a substructured archipelago population. Within-colony relatedness of worker nestmates was measured as genotypic correlation and mating structure as deviation from random mating; both were calculated from the genotype frequency data. The average relatedness of worker nestmates was rather high across populations (0.43–0.73), and random mating was the rule within populations. The data were used to deduce the social structure of populations. With one possible exception, populations turned out to be weakly polygynous, implying that they consisted of the macrogyne form of the species. The exceptional population was relatively more polygynous and inbred, suggesting that it might include the microgyne form. This exceptional population lived in a habitat not noticeably different from that of the other populations, challenging previous suggestions of the habitat specialization of the two forms. The colonies were facultatively polygynous, and a comparison with earlier studies shows that polygyny is functional. Relatedness of worker nestmates varied slightly among populations, indicating that the social structure of Myrmica colonies is flexible.  相似文献   

10.
Social insect colonies often have one or a few queens. How these queens maintain their reproductive monopoly, when other colony members could gain by sharing in the reproduction, is not generally known. DNA microsatellite genotyping is used to determine reproductive interests of various classes of colony members in the paper wasp, Polistes annularis. The relatedness estimates show that the best outcome for most individuals is to be the reproductive egg-layer. For workers, this depends on the sex of offspring: they should prefer to lay their own male eggs, but are indifferent if the queen lays the female eggs. The next-best choice is usually to support the current queen. As a rule, subordinates and workers should prefer the current queen to reproduce over other candidates (though subordinates have no strong preference for the queen over other subordinates, and workers may prefer other workers as a source of male eggs). This result supports the theory that reproductive monopoly stems from the collective preferences of non-reproductives, who suppress each other in favor of the queen. However, we reject the general hypothesis of collective worker control in this species because its predictions about who should succeed after the death of the present queen are not upheld. The first successor is a subordinate foundress even though workers should generally prefer a worker successor. If all foundresses have died, an older worker succeeds as queen, in spite of a collective worker preference for a young worker. The results support the previous suggestion that age serves as a conventional cue serving to reduce conflict over queen succession. Received: 3 May 1996 / Accepted after revision: 22 September 1996  相似文献   

11.
Summary We have demonstrated that females of the primitively eusocial tropical wasp Ropalidia marginata can discriminate nestmates from nonnestmates outside the context of their nests. This was accomplished by recroding all behavioural interactions in a neutral arena and comparing tolerance levels. In order for these wasps to make such a discrimination, however, it was essential that after eclosion both the discriminated and the discriminating animals were exposed to their respective natal nests and nestmates. The results suggest that both recognition labels and templates are acquired by the animals from sources outside their body, perhaps from their nest or nestmates. It is thus unlikely that different genetic lines within a colony can be distinguished. We conclude, therefore, that genetic asymmetries created by haplodiploidy, but often broken down by multiple mating and polygyny, are not restored by preferential altruism towards full rather than half sisters by means of kin recognition. Hence we recommend caution in ascribing the multiple origins of eusociality in the Hymenoptera to haplodiploidy.  相似文献   

12.
Summary Genetic relatedness in social insect colonies may vary spatially or temporally as a result of changes in colony membership due to immigration or to variation in patterns of maternity and paternity. We estimated relatedness for eastern tent caterpillars (Malacosoma americanum) in laboratory colonies derived from egg masses using multilocus genotypic data derived from electrophoresis. This estimate is compared with estimates obtained from colony samples taken in the field at four intervals spanning the larval developmental season. We found that average intracolony relatedness is close to 0.5 initially but declines through the developmental season due to colony merging, showing that caterpillars do not discriminate between siblings and nonsiblings in order to preserve colony family structure. Using the intracolony values together with relatedness values for higher levels of population structure, we estimated the effective mean number of simple families represented in single colonies through the season. The overall effective number of families per tent increased from one at the time of eclosion to 1.3 by the end of the season. Average intracolony relatedness remained relatively high despite the occurrence of colony merging, apparently as a result of the low density of tents on most trees, combined with high relatedness within the original colonies. Thus, high intracolony relatedness is maintained in M. americanum populations through the effects of adult dispersal, mating, and oviposition patterns, rather than through behavioral discrimination mechanisms of the larvae. These findings underscore the importance of considering the causes of temporal variation in genetic relatedness as well as the consequences for the indirect component of inclusive fitness. Correspondence to: J.T. Costa  相似文献   

13.
Solitary species show several patterns of space use and relatedness. Individuals may associate randomly or may live near female or male kin, often as a result of natal philopatry or dispersal patterns. Although usually described as solitary or asocial, woodchucks (Marmota monax) are behaviorally flexible marmots that exhibit greater sociality in some populations than others. I examined relationships between kinship, geographic distance, and home range overlap, as well as dispersal and philopatry, to determine the extent to which kin associated spatially. I used a combination of microsatellite DNA analysis, long-term behavioral observations, and radiotelemetry to test predictions that females, but not males, would associate with kin. Indeed, woodchucks lived closer and shared a greater proportion of their home range with more closely related animals. Overlap of females' and males' home ranges was positively correlated with kinship, and male–female dyads shared more area with closer kin. Most juveniles delayed dispersal beyond their first summer. Females often remained philopatric and settled near their natal range. Although males often dispersed as yearlings, some males also established territories within or immediately adjacent to their natal home ranges. A combination of factors can explain these spatial patterns, including high population density associated with the study site's location within a suburban environment, high dispersal costs, and abundant food. Thus, despite their asocial and solitary reputation, woodchucks displayed spatial patterns seen in other, more social species of ground-dwelling sciurids.  相似文献   

14.
Summary Transmission and reception of high-frequency sound in the natural environment of bushcrickets (Tettigonia viridissima L.) was studied using the activity of an identified neuron in the insect's auditory pathway as a biological microphone. Different positions of the receiver within the habitat were simulated by systematic variation of the distance from a loudspeaker and the height above the ground. Attenuation and filtering properties of the habitat were investigated with pure-tone frequencies between 5 and 40 kHz. Sound attenuation in excess of the attenuation due to geometrical spreading alone increased with increasing frequency, distance between sender and receiver, and decreasing height within the vegetation (Figs. 2–4). The data also confirm the existence of two kinds of excess attenuation. The amount of amplitude fluctuations in the sound signals was investigated by analysing the variability of the neuronal responses at a given receiver position. Variability increased with decreasing bandwidth of a noise signal at some distance from the loadspeaker. The variability in the responses to pure tones increased with both increasing frequency and distance from the source (Fig. 7). In the selected habitat, the temporal pattern of the natural calling song of male T. viridissima was very reliably reflected in the activity of the recorded neuron up to a distance of 30 m at the top of the vegetation, and 15–20 m near ground level (Figs. 5, 8). The maximum hearing distance in response to the calling song was about 40 m. Environmental constraints on long-range acoustic communication in the habitat are discussed in relation to possible adaptations of both the signal structure and the behavior of the insects.Abbreviations excessive attenuation EA - sound pressure level SPL Offprint requests to: H. Romer  相似文献   

15.
The tendency to aggregate with conspecifics is a common type of social behavior, and interspecific differences in degree of sociality may indicate that evolutionary changes in sociality have been shaped by past selection pressures. A pre-requisite for such evolutionary change is that the behavior in question has an additive genetic basis. I investigated parent-offspring resemblance in two characteristics of sociality (colony size and nearest neighbor distance) in the semi-colonial barn swallow Hirundo rustica. Heritability estimates of these phenotypic characters were statistically significant. Offspring that were transferred to foster nests as part of brood size manipulation or cross-fostering experiments resembled their original parents more than their foster parents with respect to sociality. There was little evidence of phenotypic characteristics of mothers being significantly related to colony size or nearest neighbor distance of their offspring. Maintenance of genetic variation in sociality in this species may be related to the facts that the relationship between reproductive success and colony size differs among years, and that individuals differing in phenotypic quality have different optimal colony sizes.  相似文献   

16.
Dalesman S  Rundle SD  Bilton DT  Cotton PA 《Ecology》2007,88(10):2462-2467
Interspecific recognition of alarm cues among guild members through "eavesdropping" may allow prey to fine-tune antipredator responses. This process may be linked to taxonomic relatedness but might also be influenced by local adaptation to recognize alarm cues from sympatric species. We tested this hypothesis using antipredator responses of a freshwater gastropod Lymnaea stagnalis (L.) to alarm cues from damaged conspecific and 10 heterospecific gastropod species. As predicted, the magnitude of antipredator response decreased significantly with increasing phylogenetic distance, but increased when species were naturally sympatric (defined as species cohabiting in the same water body) with the source population of L. stagnalis. The responses to sympatric species were higher overall, and the relationship between genetic distance and alarm cue response was stronger when tested with sympatric species. This is the first study to demonstrate that population sympatry influences innate antipredator responses to alarm cues from intraguild members and suggests that responses based on phylogenetic relationships can be modified through local adaptation. Such adaptation to heterospecific alarm cues suggests that species could be at a disadvantage when they encounter novel intraguild members resulting from species invasion or range expansion due to a reduction in the presence of reliable information about predation risk.  相似文献   

17.
Summary Solitary and social nests of the facultatively social carpenter bee Xyclopa pubescens can be found simultaneously during the major part of the breeding season. Social nests contain a reproductively dominant forager and either her adult offspring or a formerly reproductive, guarding female. The costs and benefits to the dominant animal of allowing a defeated female to remain as a guard in the nest were analysed in terms of brood loss and brood gain. The costs included the probability that the guard would regain reproductively dominant status. The most important benefits were the protection that a guard provided against pollen robbery by conspecifics and the longer foraging time available to a forager when her nest was protected. The balance between costs and benefits depended on the severity of ecological constraints. During certain periods of intense competition for pollen or nests, the benefits clearly outweighed the costs.Correspondence to: K. Hogendoorn  相似文献   

18.
Tan J  Pu Z  Ryberg WA  Jiang L 《Ecology》2012,93(5):1164-1172
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms. Our results showed that strong priority effects, and hence multiple community states, only emerged for the species pool with the greatest phylogenetic relatedness. Community assembly also resulted in a significant positive relationship between bacterial phylogenetic diversity and ecosystem functions. Interestingly, these results emerged despite a lack of phylogenetic conservatism for most of the bacterial functional traits considered. Our results highlight the utility of phylogenetic information for understanding the structure and functioning of ecological communities, even when phylogenetically conserved functional traits are not identified or measured.  相似文献   

19.
Plant chemistry and insect sequestration   总被引:1,自引:1,他引:1  
Most plant families are distinguished by characteristic secondary metabolites, which can function as putative defence against herbivores. However, many herbivorous insects of different orders can make use of these plant-synthesised compounds by ingesting and storing them in their body tissue or integument. Such sequestration of putatively unpalatable or toxic metabolites can enhance the insects’ own defence against enemies and may also be involved in reproductive behaviour. This review gives a comprehensive overview of all groups of secondary plant metabolites for which sequestration by insect herbivores belonging to different orders has been demonstrated. Sequestered compounds include various aromatic compounds, nitrogen-containing metabolites such as alkaloids, cyanogenic glycosides, glucosinolates and other sulphur-containing metabolites, and isoprenoids such as cardiac glycosides, cucurbitacins, iridoid glycosides and others. Sequestration of plant compounds has been investigated most in insects feeding or gathering on Apocynaceae s.l. (Apocynoideae, Asclepiaoideae), Aristolochiaceae, Asteraceae, Boraginaceae, Fabaceae and Plantaginaceae, but it also occurs for some gymnosperms and even lichens. In total, more than 250 insect species have been shown to sequester plant metabolites from at least 40 plant families. Sequestration predominates in the Coleoptera and Lepidoptera, but also occurs frequently in the orders Heteroptera, Hymenoptera, Orthoptera and Sternorrhyncha. Patterns of sequestration mechanisms for various compound classes and common or individual features occurring in different insect orders are highlighted. More research is needed to elucidate the specific transport mechanisms and the physiological processes of sequestration in various insect species.  相似文献   

20.
In any system where multiple individuals jointly contribute to rearing offspring, conflict is expected to arise over the relative contributions of each carer. Existing theoretical work on the conflict over care has: (a) rarely considered the influence of tactical investment during offspring production on later contributions to offspring rearing; (b) concentrated mainly on biparental care, rather than cooperatively caring groups comprising both parents and helpers; and (c) typically ignored relatedness between carers as a potential influence on investment behavior. We use a game-theoretical approach to explore the effects of female production tactics and differing group relatedness structures on the expected rearing investment contributed by breeding females, breeding males, and helpers in cooperative groups. Our results suggest that the breeding female should pay higher costs overall when helpful helpers are present, as she produces additional offspring to take advantage of the available care. We find that helpers related to offspring through the breeding female rather than the breeding male should contribute less to care, and decrease their contribution as group size increases, because the female refrains from producing additional offspring to exploit them. Finally, within-group variation in helper relatedness also affects individual helper investment rules by inflating the differences between the contributions to care of dissimilar helpers. Our findings underline the importance of considering maternal investment decisions during offspring production to understand investment across the entire breeding attempt, and provide empirically testable predictions concerning the interplay between maternal, paternal and helper investment and how these are modified by different relatedness structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号