首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响。通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM2.5的潜在污染来源和不同潜在源区对郑州市大气PM2.5浓度的贡献。结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM2.5浓度;郑州市冬季PM2.5的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM2.5污染水平也有着较大的影响和贡献。  相似文献   

2.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

3.
本研究结合大气环境观测数据,应用潜在源分析法(PSCF)和浓度权重轨迹分析法(CWT),以及基于WRF-CMAQ模式的传输矩阵和传输通量计算方法,研究分析了2019年秋冬季京津冀典型城市的大气污染特征与成因,量化评估了京津冀地区与周边省份之间的PM2.5传输贡献.结果表明,京津冀地区冬季较秋季污染严重,且重污染时段PM2.5浓度均与相对湿度呈显著的正相关,和风速呈显著的负相关;京津冀典型城市北京、天津和石家庄的潜在源区主要分布在京津冀本地、山西、内蒙古中部地区和山东地区,这与CWT结果基本吻合.京津冀各省域的PM2.5以本地排放贡献为主,北京、天津和河北的本地贡献率范围为54.33%~66.01%,京津冀受区域外传输的贡献率范围为0.11%~26.54%.传输通量结果表明,冬季PM2.5的传输主要受高空西北气流的作用,尤其清洁天气,高风速驱动清洁气团流入;秋季则主要受低空东南气流作用;传输通量呈现出显著的垂直分布特征,高空区域传输作用更为活跃,传输通量的流入/流出以及垂直分布与污染级别和RH呈现非线...  相似文献   

4.
利用重庆市大气污染物监测站2013年冬季(2013年11月—2014年1月)的实测数据,分析PM2.5及相关气态污染物(SO2、NO2、O3)的时空特征,并采用轨迹聚类与PSCF(潜在源贡献因子)分析污染物来源.结果表明:除ρ(O3)以外,其他3种污染物质量浓度的月际变化趋势基本一致,均呈12月升高、1月降低的特征;污染物空间分布不均,其中ρ(PM2.5)和ρ(NO2)在工业区和人口密集区较高,ρ(SO2)南高北低,ρ(O3)城区低于郊区.ρ(SO2)、ρ(NO2)与ρ(PM2.5)均呈显著正相关,其中ρ(SO2)与ρ(PM2.5)的R(相关系数)在城、郊区分别为0.71、0.65,ρ(NO2)与ρ(PM2.5)在城、效区的R分别为0.73、0.56;而ρ(O3)与ρ(PM2.5)未表现出显著相关.ρ(SO2)、ρ(NO2)与ρ(PM2.5)的相关性高低可在一定程度上说明二次气溶胶的污染程度,ρ(O3)与ρ(PM2.5)的相关性受到PM2.5来源和污染程度的影响.轨迹分析结果显示,重庆市2013年冬季主要受东北方向气流影响;聚类分析表明,重庆市11月没有表现出明显的PM2.5外来输送特征,但12月和1月的PM2.5外来输送特征明显,并且不同方向的气流污染物浓度差异也较大.PSCF分析发现,重庆市冬季PM2.5、SO2、NO2、O3主要来源于本地和周围城市局地传输,同时还受南宁、贵阳、遵义、达州等地的影响.  相似文献   

5.
基于后向轨迹模式(HYSPLIT)和美国国家环境预报中心的GDAS数据(2019年3月—2020年2月),模拟了临汾市冬季24 h的气团后向轨迹按季节的聚类,研究了不同来源区域对临汾市PM2.5的主要污染来源和污染传输通道,阐明了PM2.5不同轨迹传输的季节特征,结合潜在源贡献(PSCF)分析法和浓度权重轨迹(CWT)分析法,解析了不同污染源区对临汾市的污染贡献强度。结果表明:临汾市PM2.5污染主要集中在冬季,春秋季次之,夏季最低;通过气团后向轨迹聚类分析发现,沿汾河流域西南与西北方向是大气污染主要传输通道;潜在源贡献和浓度权重轨迹分析发现,临汾市境内、洪洞县、尧都区、襄汾县污染贡献强度较大,周边城市榆林、运城、焦作对临汾市有所影响。  相似文献   

6.
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素.  相似文献   

7.
太原市冬季PM2.5水溶性组分污染特征分析   总被引:11,自引:0,他引:11       下载免费PDF全文
为了探讨太原市大气阴霾天气的主要污染物PM2.5中水溶性组分的污染特征,于2011年12月~2012年1月,采用美国Thermal Anderson公司的大流量PM2.5颗粒物采样器进行了PM2.5样品采集,共获得样品56个.通过采样前后滤膜的重量变化计算PM2.5的质量浓度.并采用微波提取技术,用TOC/TN分析仪研究了水溶性TOC和水溶性TN等的污染特征.研究结果表明,太原市冬季采暖期PM2.5污染严重,并且比北京、天津、广州、南京、西安的污染水平都高.对PM2.5主要影响因素风速、相对湿度、温度和昼夜变化等的分析表明,风速大小与PM2.5的浓度大小呈负相关(r=-0.4693,α=0.05),相对湿度与PM2.5浓度呈正相关(r=0.4092,α=0.05),而温度与其浓度变化关系不明显;采样期间PM2.5浓度的昼夜变化规律不明显.水溶性TOC对PM2.5贡献较高,占PM2.5总量的13.2%~57.7%;NO3-、SO42-也与水溶性TOC有重要的相关关系.  相似文献   

8.
乌鲁木齐大气PM2.5对质粒DNA的损伤研究   总被引:1,自引:0,他引:1       下载免费PDF全文
2012年1月~2012年12月采集乌鲁木齐大气PM2.5样品,使用质粒DNA评价法研究了不同季节PM2.5的氧化能力,并进行氧化性毒性与相应气象因素和质量浓度之间的相关性研究.结果表明,乌鲁木齐大气PM2.5的质量浓度具有冬季最高,春季和秋季次之,夏季最低的季节性变化特征;PM2.5全样和水溶部分氧化能力的季节差异较大,对质粒DNA的氧化性损伤具有冬季最大,春季和夏季之次,秋季最低.冬、春、夏、秋季大气PM2.5全样的TD30(PM2.5对质粒DNA造成破坏达到30%所需要的颗粒物的剂量)平均值分别为440,491,503,515μg/mL,水溶部分分别为474,721,666,600μg/mL.绝大部分PM2.5样品全样的TD30值均小于水溶部分样,表明全样的毒性大于相应的水溶部分样.全样TD30值与平均温度显著(P<0.05)正相关,表明寒冷的天气/季节可能造成PM2.5的高毒性.水溶样TD30值与风速显著(P<0.01)正相关,与相对湿度显著负相关.这表明,高的风速和低的相对湿度可能跟较低和较高的PM2.5的毒性有关.PM2.5氧化性损伤能力的大小与其质量浓度之间的相关性不明显,表明仅以颗粒物的质量浓度来评价大气颗粒物氧化性损伤能力大小的方法并不能真实地反映其对人体健康的危害程度,起决定作用的还是颗粒物的化学组成及其表面吸附的有害成分.  相似文献   

9.
2012年1月~2012年12月采集乌鲁木齐大气PM2.5样品,使用质粒DNA评价法研究了不同季节PM2.5的氧化能力,并进行氧化性毒性与相应气象因素和质量浓度之间的相关性研究.结果表明,乌鲁木齐大气PM2.5的质量浓度具有冬季最高,春季和秋季次之,夏季最低的季节性变化特征;PM2.5全样和水溶部分氧化能力的季节差异较大,对质粒DNA的氧化性损伤具有冬季最大,春季和夏季之次,秋季最低.冬、春、夏、秋季大气PM2.5全样的TD30(PM2.5对质粒DNA造成破坏达到30%所需要的颗粒物的剂量)平均值分别为440,491,503,515μg/mL,水溶部分分别为474,721,666,600μg/mL.绝大部分PM2.5样品全样的TD30值均小于水溶部分样,表明全样的毒性大于相应的水溶部分样.全样TD30值与平均温度显著(P0.05)正相关,表明寒冷的天气/季节可能造成PM2.5的高毒性.水溶样TD30值与风速显著(P0.01)正相关,与相对湿度显著负相关.这表明,高的风速和低的相对湿度可能跟较低和较高的PM2.5的毒性有关.PM2.5氧化性损伤能力的大小与其质量浓度之间的相关性不明显,表明仅以颗粒物的质量浓度来评价大气颗粒物氧化性损伤能力大小的方法并不能真实地反映其对人体健康的危害程度,起决定作用的还是颗粒物的化学组成及其表面吸附的有害成分.  相似文献   

10.
福州市PM2.5污染过程中大气边界层和区域传输研究   总被引:5,自引:0,他引:5  
以福建省会福州市2013年1月空气质量变化为对象,分析大气边界层变化和周边区域污染物传输对福州市大气颗粒物PM2.5的影响.利用福州市2013年1月逐日地面和探空观测资料以及NCEP提供的2013年1月FNL分析资料,通过大气边界层要素与PM2.5浓度之间的相关性,对PM2.5污染过程的大气边界层特征进行分析;同时采用HYSPLIT后向轨迹模拟及区域风场相关矢分析对影响福州雾霾的污染物区域传输路径进行探讨.结果表明:地面气温与PM2.5浓度呈正相关,地面风速与PM2.5浓度呈负相关,近地面边界层条件有利于霾颗粒物的形成和累积.但不同于我国东部主要污染源区霾污染过程中存在大气边界层逆温,福州PM2.5污染过程中并未出现大气边界层逆温结构,这一边界层结构的垂直混合可有利于区域传输的污染物从上层大气到达近地面从而加重福州霾污染,福州是华东地区一个PM2.5污染物的主要接受区,PM2.5污染物主要以外源输送为主.2013年1月份福州市清洁日近地面风向为海洋吹向大陆的东南风,霾污染日则为大陆吹向海洋的偏北风,PM2.5污染物主要从长三角地区、苏北以及安徽河南一带通过东北和西北方向的传输路径影响福州的空气质量.  相似文献   

11.
为研究廉江市大气颗粒物污染特征,于2014年11月~12月采集TSP、PM10、PM2.5样品,用重量法分析质量浓度,并对相关性进行分析.结果表明,用环境空气质量标准(GB 3095-2012)来衡量,廉江市冬季大气颗粒物TSP、PM10、PM2.5的日均浓度均符合标准,环境空气状况良好;三个代表性采样点在监测周期内TSP、PM10、PM2.5的浓度变化趋势大体一致,监测结果能客观反映该区域颗粒物的污染状况;PM2.5与PM10,PM10与TSP之间均存在着显著相关性,回归方程相关性较好.  相似文献   

12.
为研究南京北郊大气PM_(2.5)中水溶性有机碳(WSOC)的浓度及来源特点,在冬、夏季分别采集PM_(2.5)样品,还同步收集臭氧(O_3)浓度与相对湿度(RH)数据,分析了PM_(2.5)、有机碳(OC)、水溶性有机碳(WSOC)浓度特征,并对WSOC冬、夏季来源及其二次来源差异进行了探讨.结果显示,南京北郊冬季大气污染水平明显高于夏季且来源更复杂,与冬季静稳的天气条件及化石燃料和生物质燃烧排放较严重有关.冬季PM_(2.5)平均值为(136.7±42.4)μg·m~(-3),OC、WSOC浓度分别为(13.4±4.4)、(8.5±3.1)μg·m~(-3);夏季PM_(2.5)、OC、WSOC平均浓度分别为(61.5±14.6)、(6.7±2.1)、(4.6±1.7)μg·m~(-3).冬、夏季WSOC/OC值分别为67%±20%、69%±13%,且二次有机碳(SOC)与WSOC显著正相关,说明二次来源对WSOC有显著影响.冬季WSOC与O_3的负相关性不显著,与RH显著正相关;而夏季WSOC与O_3、RH的相关性正好与冬季相反,说明冬、夏季二次WSOC形成途径存在差异.冬季二次WSOC可能主要来自液相氧化,夏季可能主要来自光化学氧化.通过主成分因子分析法进一步确定南京北郊冬、夏季WSOC分别主要来源于二次来源和生物质燃烧、汽车尾气和扬尘.  相似文献   

13.
根据毕节市2015年大气污染物浓度和气象因子的监测数据,分析了毕节市区大气污染物SO_2、NO_2、PM10、PM2.5、CO及O_3浓度的月、季和年平均变化特征及其影响因素,并对大气污染物浓度之间以及大气污染物浓度与气象因子之间的相关性进行了分析。结果表明:(1)毕节市区2015年空气质量总体良好,空气质量优良天数占95.1%,主要大气污染物为PM10和PM2.5;(2)大气污染物SO_2、PM10、NO_2、PM2.5、CO的月浓度都呈"V"型单谷变化趋势,而O_3的月浓度则为单峰变化趋势;大气污染物SO_2、PM10、NO_2、PM2.5、CO浓度的季节变化为冬季最高、夏季最低,O_3浓度的季节变化则为春季最高、冬季最低,且季节之间的差异性显著(p0.05);大气污染物PM10和PM2.5的年平均浓度分别超过我国《环境空气质量标准》(GB 3095—2012)中一级标准年平均浓度限值的18.2%和112.4%,SO_2和NO_2的年平均浓度均未超过国家一级标准的年平均浓度限值;(3)大气污染物SO_2、NO_2、CO浓度与颗粒物PM10、PM2.5浓度之间两两呈极显著正相关性(p0.01),其与O_3浓度之间呈极显著负相关性(p0.01);PM2.5浓度与PM10浓度之间呈极显著正相关性,而PM2.5浓度与O_3浓度之间呈显著负相关性,多元线性回归分析得出PM2.5浓度与其他大气污染物浓度之间的拟合方程为:PM2.5=2.718+0.130SO_2+0.747PM10+0.255NO_2-0.077O_3+0.678CO;(4)气压与大气污染物SO_2、NO_2、CO、PM10浓度之间呈显著正相关性,其与O_3浓度之间呈极显著负相关性;温度除与O_3浓度之间呈极显著正相关性外,与其他大气污染物浓度之间呈显著负相关性,且其与O_3浓度的相关性系数最大(r=0.501),说明温度对O_3浓度的影响较大;相对湿度除与CO浓度之间无显著相关性外,与其他大气污染物浓度之间均呈显著性负相关性;风速与O_3浓度之间呈极显著正相关性,其与其他大气污染物浓度之间均呈极显著负相关性。  相似文献   

14.
为了解常州春季大气气溶胶中水溶性有机碳(WSOC)和有机氮(WSON)的特点和来源,在常州市城郊于2017年春季的3月1日~5月30日采集了84个细颗粒物(PM2.5)样品。分析了其中的水溶性组分包括水溶性有机碳(WSOC)、水溶性总氮(WSTN)、水溶性离子,以及碳质组分(有机碳/元素碳,OC/EC)的浓度,探讨了WSOC和WSON的浓度水平及其来源。结果表明,采样期间,PM2.5、WSOC和WSON日平均浓度分别为101.97、7.63和1.50μg·m-3。其中,WSON占WSTN的12.9%,水溶性无机氮主要以NH4+、NO3-两种形式存在,两者占WSTN的86.15%。WSOC与WSON弱相关(r=0.58),说明WSOC和WSON来源并不完全一致。WSOC与SOC、K+、二次离子(SO42-、NH4+和NO3-)相关,说明WSOC主要来自生物质燃烧和二次转化;WSON与二次离子相关性强,说明主要来自二次转化。风速是影响WSOC和WSON浓度水平的主要因素,WSON与大气压正相关且与温度负相关。主成分分析结果表明,PM2.5主要来自二次形成、扬尘和燃煤、生物质燃烧、海洋等4个来源。后向轨迹分析表明,长距离传输方向气团中PM2.5和WSOC、WSON总浓度高于短距离传输,但不同传输路径中WSON/WSTN占比无明显差异。  相似文献   

15.
春节期间西安城区碳气溶胶污染特征研究   总被引:15,自引:4,他引:11  
采用美国R&P公司TEOM-1400a大气颗粒物监测仪器及其8通道采样系统(ACCU),在2011年春节期间实时监测和分8个时段采集了西安城区的PM2.5样品.研究了春节期间西安城区大气中PM2.5的碳气溶胶污染特征.目的是阐明2011年春节期间燃放烟花爆竹时,西安城区大气中细颗粒PM2.5的质量浓度、元素碳(EC)、有机碳(OC)及水溶性有机碳(WSOC)的浓度分布特征,探讨了其污染来源.结果表明,除夕00:00~02:59为污染浓度最大时段,PM2.530 min平均浓度在01:00时刻达到最大值1 514.8μg·m-3,其碳组分OC、EC、WSOC、非水溶性有机碳(WIOC)分别为123.3、18.6、66.7和56.6μg·m-3,高于春节期间的其他正常时段1.7倍、1.2倍、1.4倍和2.2倍.碳气溶胶组分WSOC与OC、EC相关性分析表明春节烟火期间含碳物质更多的来自于烟花爆竹燃放,但其对烟火时段的气溶胶的贡献较小,仅为9.4%.  相似文献   

16.
张忠地  邵天杰  黄小刚  卫佩茹 《环境工程》2020,38(2):99-106+134
京津冀及周边地区大气污染问题突出,秋、冬季重污染天气频发。为探讨该地区PM2.5污染来源,分析其污染状况和气象因素的关系,利用2017年京津冀地区空气质量监测站的气象资料如气压、风速、相对湿度、温度、降水量等,结合Arc GIS软件空间插值法、SPSS 21. 0的Pearson相关性分析等方法,采用拉格朗日混合型的扩散模型HYSPLIT后向轨迹聚类分析方法,探讨北京地区主要气团传输轨迹,结合GDAS气象资料计算潜在源贡献因子。结果表明:1) 2017年京津冀地区ρ(PM2.5)年均为64. 4μg/m3,比2016年下降11. 5%,全年达标天数占比为74. 2%。2)京津冀地区PM2.5与气压、相对湿度呈正相关,其中气压与PM2.5相关性最高;与风速、日照时长、温度、降水量呈负相关,其中日照时长与PM2.5相关性最高。冬季比其他季节影响更为显著。3)从时间尺度看,冬季污染最严重,秋、春季稍好,夏季PM2.5优、良级占92. 4%;...  相似文献   

17.
为了探讨京津冀地区冬季背景大气中气溶胶化学组分特征及其来源分布,使用GRIMM 180、单颗粒黑碳光度计(SP2)和高分辨率飞行时间气溶胶质谱仪(HR-TOF-AMS)观测了海坨山2020年12月28日至2021年2月3日PM和化学组分,结合气象数据和HYSPLIT模式,计算了潜在源贡献因子(PSCF)和浓度权重轨迹(...  相似文献   

18.
《环境科学与技术》2021,44(4):80-88
文章针对2019年12月长沙市冬季气象数据和大气污染物质量浓度在线监测数据,分析大气污染特征及气象因素,通过HYSPLIT后向轨迹模型和NCEP的GDAS气象数据对12月及污染过程的3个阶段逐时72 h气流后向轨迹进行聚类,利用潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)揭示长沙市冬季PM_(2.5)的潜在源区及其贡献特征。结果表明:12月长沙市PM_(2.5)平均浓度分别为77.12μg/m~3,其中阶段Ⅱ(185.9μg/m~3)阶段Ⅰ(80.9μg/m~3)阶段Ⅲ(59.1μg/m~3),相关性分析和特征雷达图表明,污染过程以一次颗粒物的排放为主;风速上升过程长沙市PM_(2.5)污染方位由西南方向南方转移,不利气象条件促进了污染过程PM_(2.5)的积累和爆发;聚类分析显示长沙市12月来自湘鄂交界处的轨迹3最频繁,来自福建和广东的轨迹4携带PM_(2.5)浓度最高。阶段Ⅰ偏燃煤型污染显著,受安徽、江西和湖南3个省份的气流轨迹影响;阶段Ⅱ偏二次型污染受福建和广东气流轨迹影响;阶段Ⅲ转变为偏综合型和其他类型污染,与北方气流占比相对阶段Ⅱ上升有关,主要受来自江西和福建交界处的轨迹1影响浓度和占比均为最大;WPSCF和WCWT结果显示,长沙市PM_(2.5)浓度的主要源区位于湖南西南、北部及广东、湖北等地。  相似文献   

19.
本文利用环境空气质量和气象要素的小时观测数据,分析了天津一次典型大气重污染过程前后空气质量和主要气象因素的变化特征,研究了气象条件对环境空气质量的影响,结果表明:天津地区大气重污染过程呈现两种特征,一种是"逐渐积累、迅速清除",主要在污染过程的开始和结束时段呈现;另一种是"快速下降、快速回升",主要在污染过程中期,由于风向转变使污染物输送推移导致的。在污染物积累阶段,风速明显偏小,相对湿度增大;在污染过程结束阶段,风速明显偏大,风向多为西北风,相对湿度明显下降。分析了风速、相对湿度与PM2.5浓度的相关性,其中风速与PM2.5浓度呈指数相关,R2达到0.420,相对湿度与PM2.5浓度呈线性相关,R2达到0.520。  相似文献   

20.
苏锡常地区PM2.5污染特征及其潜在源区分析   总被引:3,自引:1,他引:2  
利用2014年12月—2015年11月苏锡常地区国控大气环境质量监测站发布的逐时数据,分析了研究区PM_(2.5)浓度的季节变化和空间分布特征,并利用HYSPLIT模型分析了大气污染物的输送路径及苏锡常地区PM_(2.5)的潜在源区.结果表明,苏锡常地区PM_(2.5)浓度日均值变化趋势基本一致,均呈现冬季高、夏季低的规律.PM_(2.5)浓度四季空间差异显著,不同监测站之间的差异较小.四季PM_(2.5)浓度与其它污染物之间相关性显著.单位面积污染物排放量与空气质量分布的空间错位,表明该地区PM_(2.5)污染与区域性污染物迁移有较大关系.苏锡常地区气流后向轨迹季节变化特征明显,冬、春、秋季的气流主要来自西北内陆地区,夏季气流以东南和西南方向输入居多.聚类分析表明,来自内陆的污染气流和来自海洋的清洁气流是苏锡常地区两种主要输送类型,外源污染气流不仅直接输送颗粒物,还贡献了大量的气态污染物.山东南部、江苏西部、安徽东部、浙江北部及江西西北地区对苏锡常冬季PM_(2.5)浓度贡献较大,春、夏、秋季的潜在源区主要分布在苏锡常本地和周边城市.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号