首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
杭州市近地面大气臭氧浓度变化特征分析   总被引:1,自引:0,他引:1  
利用2012~2016年杭州市近地面臭氧(O_3)的连续观测资料以及气象数据,分析了杭州市近地面O_3浓度的变化特征及其与气象要素的关系.结果表明,近年来杭州市O_3年平均浓度较10年前升高10μg/m~3左右,光化学污染形势日趋严重.O_3浓度冬季较低,其余季节均较高,日平均浓度大于100pg/m~3主要分布在4~10月.O_3浓度日变化呈单峰型分布,5:00~7:00出现最低值,14:00出现峰值,超标时段主要出现在11:00~18:00.O_3浓度变化与紫外辐射、温度呈正相关关系,与相对湿度呈负相关关系.紫外辐射大于0.02MJ/m~2、气温高于20℃、相对湿度低于70%时,O_3浓度会出现超标情况.风向风速对O_3浓度有一定影响,当风向为北风或偏北风时,O_3浓度较低;当风向为东风或偏东风时,O_3浓度较高,说明影响杭州O_3浓度升高的污染源也主要来自东部,南部和北部地区较少.  相似文献   

2.
基于国控环境空气质量监测站数据分析了安阳市2014~2017年不同功能分区(城市、郊区和工业)点位的臭氧(O_3)污染特征和变化规律,并研究了O_3污染的气象影响因素和潜在源分布.结果表明,2014~2017年安阳市各站点O_3年均浓度上升明显,O_3超标日的出现从2015年开始不断提前,最早在2017年4月出现;工业区点位O_3第90百分位数和平均值增长最快,年均分别增长16. 0μg·m~(-3)和13. 0μg·m~(-3),郊区点位O_3第5百分位数增长最快,年均增长13. 2μg·m~(-3);安阳市O_3月变化呈"M"型,且具有明显的空间差异;温度对O_3浓度起主导作用;气温大于23℃、相对湿度小于58%和西南偏南方向5m·s-1风速与高浓度O_3污染密切相关;不同季节O_3潜在来源差异明显,夏季主要分布在河北南部、湖北北部和沈阳北部.2017年5月首次出现O_3重污染日,工业点位O_3小时平均浓度高达405μg·m~(-3),重污染事件与西部干热气团转移导致持续高温有关.  相似文献   

3.
根据2016年徐州市区7个自动空气监测子站的臭氧(O_3)与气象要素的连续观测数据,探讨了徐州市区大气中O_3浓度的变化特征及与气象要素的关系。结果表明:2016年徐州市区O_(3-8h)浓度为12~206μg/m~3,年均值为122μg/m~3;O_3浓度呈现夏季春季秋季冬季的季节性变化特征和"单峰型"的日变化特征。O_3浓度与温度呈正相关性,与湿度和气压呈负相关性;当气压1 010 hpa,气温25℃,相对湿度50%时,O_(3-8h)容易出现超标污染。  相似文献   

4.
采用吉林省国家环境空气自动监测站点的臭氧(O_3)和气象(气压、气温、相对湿度和风速)监测数据,探讨吉林省臭氧时空特征及其与气象要素的关系。结果表明:2017年吉林省O_3最大8 h 90百分位浓度呈现"中间高,两边低"的片状分布;2017年吉林省各季节O_3最大8 h平均浓度从高到低依次为:夏季春季秋季冬季;2017年吉林省O_3浓度月变化和日变化均呈单峰型,月变化中于5月出现峰值,12月出现谷值;日变化中于上午7∶00出现谷值,下午15∶00出现峰值;从臭氧超标率来看,当970 h Pa平均气压≤980 h Pa、平均温度25℃、最高气温30℃、日较差16℃、40%相对湿度≤50%以及3 m/s平均风速≤3.5 m/s时,吉林省易发生臭氧污染。  相似文献   

5.
利用2015年1月-2018年12月北京、广州、南京、武汉的O_3资料,分析对比了中国中东部城市O_3浓度变化特征。结果表明,各城市近地面O_3污染问题愈发严重,4年浓度均值南京(105.9μg/m~3)北京(100.7μg/m~3)武汉(92.7μg/m~3)广州(89.4μg/m~3);总超标率北京(19.5%)南京(15.8%)武汉(9.7%)广州(8.9%);O_3污染过程发生总次数北京(37)南京(29)广州(18)武汉(15),且北京、南京臭氧污染过程持续时间高于广州和武汉;北京O_3月均值变化呈单峰型,广州呈多峰型,南京、武汉呈双峰型。北京、南京、武汉春夏两季O_3浓度高于秋冬两季,广州为夏秋两季O_3浓度高于春冬两季;北京、广州、南京和武汉O_3日变化在4年内均呈单峰型,各城市O_3浓度在下午15-16时达到峰值,前体物浓度和光化学反应的差异是造成城市每年O_3浓度日变化不同的重要原因;随风速、相对湿度增加,4个城市O_3浓度均呈先增后降的特点,当风速4 m/s时,北京、南京O_3浓度仍处于较高水平;在低湿状态时,4个城市O_3浓度值偏高,当相对湿度70%时,O_3浓度均急剧下降;相比于广州,北京、南京和武汉O_3浓度对温度变化较敏感,其中以北京最为敏感。  相似文献   

6.
河南省臭氧污染特征与气象因子影响分析   总被引:1,自引:0,他引:1  
利用环境空气质量监测站和国家基准地面气候站数据,研究了2017年河南省臭氧(O_3)污染时空特征及其与颗粒物、前体物和气象因子关系.结果表明,河南省2017年O_3日最大8 h滑动平均值(MDA8)呈现夏季春季秋季冬季的特征,年均值为108μg·m~(-3);各地市均有不同程度O_3超标情况,其中,安阳超标天数高达88 d,信阳最少为17 d;春末夏初(5月和6月) O_3污染最为严重,O_3 MDA8月均浓度在140μg·m~(-3)以上,并在6月达到峰值;定性和定量分析显示O_3 MDA8月均浓度与颗粒物,O_3小时浓度与CO、NO_2呈负相关;不同季节、不同城市O_3MDA8与气象因子(日照时长、气温、降雨、能见度、相对湿度及风速)的相关性具有差异.  相似文献   

7.
西安地区夏季臭氧的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用WRF-CHEM模式对关中地区2015年7月25日至30日的一次O_3污染事件进行了数值模拟。通过与地面观测数据对比发现,WRF-CHEM模式基本上可以合理模拟西安和咸阳城市群O_3和NO_2的质量浓度的时空分布。敏感性试验表明,在臭氧生成的峰值期(12:00—18:00 LT),交通源是城市重要的O_3源,无论在高浓度臭氧条件下还是低浓度臭氧条件下,贡献量都高于15μg?m~(-3),平均贡献量均高于24μg?m~(-3);工业源仅在臭氧峰值生成时期贡献明显;生物源无论在高浓度还是低浓度臭氧的条件下,平均贡献都在16μg?m~(-3)以上;居民源的贡献基本低于10μg?m~(-3);能源生产源有降低O_3质量浓度的作用,但在臭氧生成的峰值时期,能源生产源可以增加O_3质量浓度。随着交通源排放量的增加,O_3的质量浓度逐渐增加,尤其在臭氧的峰值期。在臭氧生成峰值期,当氮氧化物(NOx)减少50%时,除城市中心臭氧浓度略增加,其他地区臭氧质量浓度均在下降;当挥发性有机物(VOCs)减少50%时,城市群内臭氧质量浓度都在下降;当NO_x和VOCs同时减少50%时,臭氧质量浓度都呈现下降趋势,减少量可达20μg?m~(-3)以上。在整个研究区域内,H_2O_2/HNO_3比值均在0.6以上,这表明西安和咸阳城市群属于NO_x控制区。  相似文献   

8.
为控制大鹏新区O_3污染,分析了新区(葵涌、南澳、杨梅坑监测站点)O_3浓度变化及NO_2、气象条件对其影响。研究发现,2016年新区O_3浓度为69μg/m3,其中葵涌O_3浓度同比涨幅高于南澳。葵涌、南澳O_3与NO_2浓度成反比,表明两站点较低浓度的NO_2往往伴随着较高浓度的O_3。葵涌臭氧周末效应显著,休息日浓度(53.63μg/m~3)高于工作日(52.92μg/m~3)。新区夏季O_3浓度处于全年较低水平,但O_3污染高发于夏半年(7—10月)。新区O_3超标的关键气象因子为温度≥20℃、相对湿度≤40%、无降水及受偏南风控制。新区应首要针对葵涌站点,严控O_3高发时段(15∶00前后)以及休息日臭氧前体物排放。  相似文献   

9.
基于GAM模型的四川盆地臭氧时空分布特征及影响因素研究   总被引:4,自引:0,他引:4  
为研究四川盆地臭氧(O_3)时空分布特征及其气象成因,对四川盆地18个城市2015—2016年国控环境监测站点和气象台站数据进行了研究分析.结果表明:2015—2016年四川盆地O_3污染愈发严重,高值污染区呈扩张态势,污染区主要位于盆地西部成都、德阳、资阳、眉山、内江一带和以广安为中心的周边区域.O_3浓度有明显的季节变化特征:夏季(110.70±41.52)μg·m~(-3)春季(95.24±41.23)μg·m~(-3)秋季(67.58±39.55)μg·m~(-3)冬季(47.17±41.15)μg·m~(-3).基于广义相加模型(GAM)分析发现O_3浓度与气压、气温、相对湿度、风速、日照时数、降水量间均呈非线性关系,其中日照时数、相对湿度以及气温对四川盆地O_3浓度影响较大,而风速、气压以及降水量对O_3浓度影响相对较小.通过构建GAM模型对四川盆地18个城市O_3污染的主导气象因子进行识别,并对2017年O_3浓度进行预测和检验,结果显示GAM模型能较为准确地预测四川盆地各城市O_3浓度的变化趋势.  相似文献   

10.
《环境科学与技术》2021,44(6):125-132
文章基于2017-2020年长寿区及观测点位臭氧(O_3)及其前提物(NO_2和VOCs)以及气象因子(气温、相对湿度、风速、风向等)逐小时数据,分析了臭氧(O_3)及其前体物(NO_2和VOCs)污染物浓度年际及O_3污染典型期间的变化情况,讨论了O_3浓度与气象因子之间相关性,通过HYSPLIT后向轨迹和潜在源区贡献(PSCF)分析长寿区春、夏两季O_3潜在源区贡献特征。研究表明,O_3小时浓度160μg/m~3的超标小时浓度占比在2017-2019年呈逐年上升趋势,因新冠疫情影响2020年显著降低。全年O_3浓度高值区集中在4-9月,呈"夏高冬低"特征。O_3和NO_2的日变化特征反应了局地NO-NO_2转化与光化学生成的滴定作用。VOCs观测期内平均浓度为32.01×10~(-9)(体积浓度),较重庆市夏季VOCs偏高23.64%。O_3生成潜势贡献表现为含氧类VOCs芳香烃类烷烃烯烃卤代烃炔烃。O_3浓度与不同气象因子之间存在不同的相关性特征。该区域潜在源区具有明显季节性特征:春季主要位于涪陵、南川和巴南等区域;夏季主要集中在广安、江北、合川、渝北等一带。  相似文献   

11.
利用2012年中国气象局广州番禺大气成分站的O_3、NO_x逐时浓度数据,广州观象台逐时的温度、相对湿度以及风向风速数据,统计分析了2012年O_3前体物(NO_x)以及气象因子对珠江三角洲(以下简称珠三角)地区臭氧浓度的影响.研究发现:O_3和NO_x均表现出单峰结构的月变化特征,且分别于10月和3月达到峰值,为(104.9±68.0)μg/m~3,(131.1±122.1)μg/m~3.O_3的日变化为单峰分布,午后的浓度较高,而NO_x浓度于早晚高峰有增加,且夜间浓度高于白天.NO_x对O_3有显著的滴定作用,O_3浓度随着NO_x浓度的增加呈现指数形式下降.高温低湿条件有利于O_3的形成.与NO_x类似,O_3浓度随着温度和相对湿度的增大以指数形式相应的增大和减小.当珠三角地区受偏西风控制时,下风向地区的O_3浓度最高,而当珠三角地区盛行偏北风时,下风向地区的O_3浓度最低,且该方向所对应的NO_x浓度最高,表明广州城区的NO_x对O_3的滴定作用显著.珠三角地区发生光化学污染的关键性因子主要为20~40μg/m~3的NO_x浓度,高于27°C的气温,低于55%的相对湿度以及受偏西风控制.分析发现10月份O_3的形成主要受VOCs控制,且烯烃的O_3生成潜势贡献最大,为69%,而烷烃和芳香烃的贡献分别为15%、16%.  相似文献   

12.
广州近地面臭氧浓度特征及气象影响分析   总被引:10,自引:0,他引:10  
利用2015年广州市近地面逐时臭氧(O_3)观测资料及气象数据,分析了广州地区近地面的O_3浓度时空分布特征及其与气象因子的关系.结果表明:广州地区城郊的O_3浓度高于中心城区;广州地区近地面的O_3浓度超标时间主要出现在4—9月,8月O_3浓度最高,3月O_3浓度最低;O_3浓度日变化呈现"单峰型"分布,早上7:00—8:00出现最低值,15:00达到峰值;O_3浓度与气温呈正相关,当气温高于30℃时,O_3浓度随温度升高增加明显;与相对湿度呈负相关,当相对湿度大于60%时,O_3浓度显著降低;当气压小于1010 hpa时,与气压呈负相关,当气压大于1010 hpa时,与气压呈正相关;当风力为2~3级吹西北偏西至西南偏西风区间时,O_3浓度最高,说明广州偏西部可能存在O_3污染源区;O_3浓度在晴天最高,其次是少云和多云天气,最低是在雨天.总体而言,气温高、日照长、辐射强、气压低、湿度小及2~3级的风力是广州地区近地面产生高浓度O_3的主要气象因素.当广州O_3浓度出现超标时,气温变化范围为25.9~37.4℃,相对湿度变化范围为29%~83%,气压变化范围为989.4~1009.1 h Pa,风速变化范围为0.7~5.8 m·s~(-1),紫外辐射强度日最大1 h均值最小为32.6 W·m~(-2),10:00—14:00均值最小为27.3 W·m~(-2).  相似文献   

13.
本文根据2015~2017年中国大陆338个城市空气质量监测站臭氧(O_3)浓度数据,综合利用空间插值法、全局自相关法和地理加权回归模型(GWR),探讨了O_3浓度的时空变化特征及其与社会经济因素的关系。结果表明,2015~2017年中国大陆338个城市的O_3日最大8小时浓度为2~300μg/m~3,其中超标天数比例为5. 9%,323个城市达标率在85%以上; O_3月均值变化曲线基本呈"单峰状",5月达到峰值,12月最低; O_3浓度季节变化为夏季春季秋季冬季; O_3日变化特征为夜间到清晨O_3浓度很低,上午8∶00左右开始升高,下午16∶00达到峰值;中国华北地区、华东地区和华中地区O_3污染严重,华南地区、西南地区、西北地区和东北地区整体污染较低。O_3浓度在全国尺度上的集聚性呈上升趋势,GWR表明,人口密度、人均私家车保有量与O_3浓度显著正相关,第一产业占比与O_3浓度显著负相关。  相似文献   

14.
《环境科学与技术》2021,44(2):66-75
为有效预防突发沙尘暴天气下大气颗粒物对世界文化遗产地敦煌莫高窟壁画及彩塑的污染,文章选取了第138窟内、72窟前及九层楼顶3处监测点,探讨了大气颗粒物污染特征及影响因素。结果表明:72窟前平均风速为1.57 m/s,小于起沙风速,九层楼顶平均风速为10.66 m/s,大于起沙风速,占比为98.50%,主风向为东北偏东,占比为39.85%。九层楼顶颗粒物质量浓度比其他监测点更快达到最大值。第138窟内、72窟前PM2.5日均质量浓度为(43.82±15.51)、(59.85±29.78)μg/m~3,超标倍数为0.25、0.71,九层楼顶PM2.5超出仪器上限。第138窟内、72窟前、九层楼顶PM10日均质量浓度为(58.60±21.36)、(74.43±36.52)、(3 725.41±203.41)μg/m~3,超标倍数为0.17、0.49、73.51;TSP日均质量浓度为(80.15±29.02)、(102.33±48.22)、(5 593.68±707.98)μg/m~3,超标倍数为0、0、45.61。各监测点输送颗粒物的主要风向为ENE、NE、E和N、NNE。颗粒物质量浓度与气温、气压呈负相关,与风速呈正相关,除72窟前PM2.5外,其他颗粒物质量浓度与空气相对湿度呈负相关。  相似文献   

15.
根据2014年4月至2015年3月湖南省长沙市城区10个监测点O_3小时浓度监测数据,综合分析了长沙市O_3的时空分布及其与前体物、气象要素相关关系。结果显示:监测期间长沙市城区O_3小时平均浓度为44.47μg/m~3,O_3高值浓度主要集中在5-9月份,季节分布上O_3平均浓度整体呈现出冬季春季秋季夏季的特征。日变化上O_3呈现倒U型分布,一般在15:00、16:00左右达到峰值浓度,日循环可分为4个阶段:即臭氧累积阶段、臭氧抑制阶段、臭氧光化学生成阶段、臭氧的消耗阶段。空间分布上整体呈现出对照点峰值浓度明显大于城市环境评价点,从城区外围站点浓度大于市中心点浓度特征。O_3的前体物CO、NO_2均呈现双峰型分布,其中O_3与CO、NO_2呈现显著的负相关关系;与气压、湿度呈负相关关系,与温度呈正明显相关关系。  相似文献   

16.
上海市中心城区低空大气臭氧污染特征和变化状况   总被引:3,自引:0,他引:3  
对2005年1月~12月上海闸北地区地面空气臭氧污染浓度连续监测结果分析,表明臭氧小时浓度均值超过GB3095-1996<环境空气质量标准>二级标准160μg/m3的频率为2.88%,其中6月份超标率居全年之首,1月、2月和12月超标率为零.臭氧浓度日变化规律表明,日最大值出现在12时~14时之间,具有受污染地区光化学过程臭氧生成的典型日变化特征.臭氧浓度日振幅6月最大,2月最小.5月份臭氧月均浓度91μg/m3全年最高,最高小时均值浓度350μg/m3出现在5月19日,说明上海中心城区空气中臭氧生成可能受到前体污染物的浓度影响更大.太阳紫外辐射、气温、风速、风向、相对湿度、降水等气象因素的变化对O3变化的影响分析,在高温晴朗的天气中观察到NO2/NO比值与O3成显著线性关系.  相似文献   

17.
为了解石家庄市主城区O3(臭氧)污染特征及其影响因子,基于2015-2018年石家庄市空气质量连续监测资料和同期气象数据分析了主城区O3污染总体特征及气象成因.结果表明:①石家庄市主城区大气光化学污染日益严峻,ρ(O3)日均值由2015年的47 μg/m3增至2018年的66 μg/m3,ρ(O3)超过GB 3095-2012《环境空气质量标准》二级标准限值的天数由2015年的20 d增至2018年的70 d.②ρ(O3)存在明显的季节性差异,呈夏季[(89±33)μg/m3] >春季[(69±25)μg/m3] >秋季[(40±26)μg/m3] >冬季[(28±16)μg/m3]的特征;ρ(O3)日变化呈单峰型分布,谷值出现在06:00-07:00,峰值出现在15:00-16:00,且15:00-17:00是ρ(O3)超标的高发时段.③ρ(O3)与气温呈指数关系,当气温为20~25、25~30、≥ 30℃时,ρ(O3)日均值分别为75、90及119 μg/m3.ρ(O3)在相对湿度为60%时存在拐点,当相对湿度≤ 60%时,ρ(O3)随相对湿度的增大而上升;当相对湿度>60%时,ρ(O3)随相对湿度的增大而下降.风速与ρ(O3)呈分段线性关系,当风速 < 2 m/s时,ρ(O3)随风速的增加而上升;当风速≥ 2 m/s时,ρ(O3)随风速的增加而下降.④影响石家庄市主城区ρ(O3)升高的污染源主要位于其东-东南-南方位,其次为东北-东方位,而西部和北部地区则较少.⑤石家庄市主城区ρ(O3)超标多发生在气温>20℃,相对湿度介于40%~70%之间,风速在1.5~3.0 m/s之间的气象背景下,经统计,当气象条件同时符合上述三项气象要素时,ρ(O3)超标天数占3-10月总超标天数的66.5%.研究显示,气温>20℃、相对湿度为40%~70%、风速为1.5~3.0 m/s的气象条件可初步作为石家庄市主城区O3污染的预警指标.   相似文献   

18.
不同空气质量等级下环境空气颗粒物及其碳组分变化特征   总被引:2,自引:2,他引:0  
为研究不同空气质量等级下环境空气颗粒物及其碳组分变化特征,于2016年3月在廊坊市对环境空气中PM_(10)、PM_(2.5)和PM1质量浓度及PM_(2.5)中碳组分质量浓度进行了在线监测.结果表明,监测期间廊坊市PM_(10)、PM_(2.5)和PM1质量浓度较高,其分别为204.1、107.9和87.8μg·m~(-3),日变化趋势呈双峰型分布.总体来说,当空气质量越好,PM_(10)、PM_(2.5)、PM1及其碳组分(OC、EC、SOC和POC)质量浓度越低,PM1/PM_(2.5)、PM1/PM_(10)和PM_(2.5)/PM_(10)比值越小.但"中度污染"时,PM_(10)质量浓度最高,且PM1/PM_(10)和PM_(2.5)/PM_(10)达到谷底值;同时OC质量浓度比"轻度污染"略低,而明显低于"重度污染",且主要出现在13:00~23:00,表明"中度污染"时细颗粒物和超细颗粒物占比下降,与其对应的首要污染物相一致.此外,OC/EC比值大于2.0,通过最小OC/EC比值法估算PM_(2.5)中SOC和POC,其浓度均值分别为12.2μg·m~(-3)和5.0μg·m~(-3).  相似文献   

19.
成都市臭氧污染特征及气象成因研究   总被引:5,自引:0,他引:5  
为研究成都市臭氧(O3)污染特征及其气象成因,对2014—2016年成都市6个国控环境监测站和同期气象台站逐小时地面观测数据进行了研究分析.结果表明:近4年来成都市O3污染日趋严重,O3年均浓度不断上升,较2013年升高51.2μg·m-3.O3浓度存在明显的季节变化特征:春、夏季较高,秋、冬季则较低,且各季节O3浓度变化具有很强的长期持续性特征.O3浓度日变化特征呈明显的单峰型分布,8:00出现最低值,15:00—16:00出现峰值,超标时段主要出现在13:00—17:00.O3浓度变化与紫外辐射、气温呈正相关关系,与相对湿度、风速呈负相关关系,且当紫外辐射大于12 MJ·m-2、气温高于15℃、相对湿度低于65%、西风或偏东北风控制时,成都市容易发生高浓度O3污染.  相似文献   

20.
采集阳泉市区夏季3个监测点的环境空气样品,利用气相色谱-质谱/氢火焰离子化检测器(GC-MSD/FID)测定了挥发性有机物(VOCs)的组成,研究了其浓度特征,运用特征比值法和正定矩阵因子分析模型(PMF)解析了VOCs来源,评估了VOCs对O_3和二次有机气溶胶(SOA)生成的影响.结果表明,阳泉市区VOCs平均总浓度为(82.1±22.7)μg·m~(-3),其中烷烃浓度占比最大(51.8%),其次是芳香烃(17.8%)和烯烃(8.0%),炔烃浓度占比最小(3.8%). VOCs呈现双峰的变化特征,分别于08:00~10:00和18:00~20:00出现峰值,在12:00~14:00出现谷值.苯/甲苯和异戊烷/正戊烷的均值分别为2.1±1.3和1.7±0.6,表明环境空气VOCs可能受燃煤排放和机动车排放的双重影响. PMF解析出VOCs来源分别为燃煤源(34.9%)、机动车排放源(18.2%)、汽油挥发源(15.2%)、工业排放源(13.6%)、植物排放源(9.2%)和溶剂使用源(9.0%). VOCs臭氧生成潜势(OFP)均值为156.6μg·m~(-3),烯烃贡献最大,二次有机气溶胶生成潜势(SOA_p)均值为68.7μg·m~(-3),芳香烃的贡献达到93.4%.总之,燃煤排放对VOCs的贡献较高,因此,控制燃煤源排放是阳泉市区VOCs管控重点,需加快矸石山治理和能源结构调整,同时机动车排放源、汽油挥发源和工业排放源的管控也不容忽视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号