首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
本研究采用WRF-CAMx模型对京津冀及周边7省市PM_(2.5)与SIA组分传输规律进行了研究,定量估算了京津冀地区PM_(2.5)与SIA的空间来源贡献,并得到了各省市之间的传输矩阵.结果表明,PM_(2.5)与SIA组分跨区域传输作用较为显著.京津冀区域PM_(2.5)与SIA组分外来源年均贡献分别为23.4%和45.5%.京津冀及周边各省市年均PM_(2.5)与SIA组分受本地排放影响分别为51.2%~68.8%与36.7%~56.4%.结合后向轨迹模型对北京市2013年1月4次重污染过程的空间来源进行了分析,发现各过程污染气团来向有明显差异,分别由西北方向长距离传输、南部短距离传输以及西南、东南方向局地气团输入.4次重污染过程PM_(2.5)区域传输作用显著,北京PM_(2.5)及SIA本地源贡献分别为35.1%~37.3%与17.1%~28.4%;其中偏南方向气团输入时,北京污染程度更高,且受京津冀排放源贡献较大,PM_(2.5)和SIA贡献率最高可达82.3%和76.4%.  相似文献   

2.
京津冀区域PM2.5污染相互输送特征   总被引:1,自引:1,他引:1  
王燕丽  薛文博  雷宇  王金南  武卫玲 《环境科学》2017,38(12):4897-4904
基于CAMx-PSAT空气质量模型,对2015年京津冀区域PM_(2.5)污染及相互输送特征进行定量模拟,建立了京津冀13个城市的PM_(2.5)传输矩阵.结果表明,在年均尺度上京津冀区域PM_(2.5)以本地污染源贡献为主(21.49%~68.74%),传输贡献为辅,其中区域内传输贡献约为13.31%~54.62%,区外贡献约为13.32%~45.02%.PM_(2.5)传输特征呈现显著的时空差异性,区域中部城市唐山、北京、天津、保定和石家庄PM_(2.5)受本地贡献主导,在冬季尤其明显,而受传输影响较大的城市多分布在区域边界且在南部集中.区内作为汇的城市有廊坊、衡水、承德、秦皇岛和邢台,作为源的城市有天津、沧州、唐山、北京、石家庄和邯郸,张家口和保定对区内城市输出和受区内输入基本持平.典型城市分析证明城市间PM_(2.5)污染交互影响,北京与廊坊、保定、承德、天津和沧州等城市之间,天津与廊坊、唐山、北京、沧州和保定等城市之间,石家庄与邢台、衡水、保定、邯郸和廊坊之间均存在显著的PM_(2.5)相互输送.  相似文献   

3.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

4.
京津冀地区主要排放源减排对PM2.5污染改善贡献评估   总被引:3,自引:2,他引:1  
研究选取2012年1月和7月作为冬夏两季代表时段,利用CMAQ/2D-VBS模型分析了冬夏两季京津冀地区主要排放源减排30%对改善区域PM_(2.5)污染的效果.结果表明,工业源对PM_(2.5)污染的贡献最大,其次是民用源,但工业源单位减排量贡献低于民用源,交通源和电厂源的整体贡献和单位减排量贡献均较小.工业部门内贡献最大的为钢铁冶金行业,其次是水泥、工业锅炉、炼焦、石灰砖瓦和化工行业.与各部门各物种排放量的比较反映出各排放源贡献大小与其一次PM_(2.5)排放水平高度相关.因京津冀地区冬季NO_x减排对PM_(2.5)形成的促进作用,以及冬季较弱的大气垂直扩散作用,各排放源夏季减排比冬季普遍更有效,交通源、电厂源以及工业源中的水泥、工业锅炉和石灰砖瓦行业夏季减排效果相比冬季优势明显.民用源由于采暖季排放较高而冬季贡献更明显,农业源因秸秆开放燃烧量大,冬季单位减排量贡献十分显著.从同等幅度减排考虑,应将工业源作为控制重点,优先控制其一次PM_(2.5)排放,在部门内进一步重点控制钢铁冶金行业的NO_x和SO_2排放、水泥行业的夏季NO_x排放以及炼焦行业的SO_2和NMVOC排放.民用源排放应着重在冬季采暖期控制.  相似文献   

5.
基于曲面响应建模的PM2.5可控人为源贡献解析   总被引:1,自引:0,他引:1  
以东莞市PM_(2.5)重污染月份为例,使用强力法(Brute Force)和RSM/CMAQ曲面响应模型法分别解析了珠三角地区人为源排放对东莞PM_(2.5)的贡献,以及区域传输的可控人为源SO_2、NO_x和一次颗粒物(PM)在不同控制比例下(25%、50%、75%和100%)对东莞PM_(2.5)的累积浓度贡献.强力法研究结果表明,2014年1月珠三角地区人为源二次转化对东莞市PM_(2.5)的贡献(约58.10%)大于一次PM排放贡献(约41.90%),其中,人为源NH_3排放贡献最大,约占总量的21.66%.RSM/CMAQ动态源贡献结果显示,东莞市PM_(2.5)的人为可控源排放贡献(SO_2、NO_x和一次PM)占比为82.17%,受本地排放影响较大,且叠加区域排放的影响;一次PM减排对PM_(2.5)环境浓度的贡献高于仅减排SO_2和NO_x.在减排比例较低时,一次PM减排可有效削减东莞市PM_(2.5)浓度;随控制比例加大,二次前体物(SO_2和NO_x)减排对东莞市PM_(2.5)浓度削减率的影响加大.进一步使用HYSPLIT模式和轨迹聚类分析方法研究了2014年1月东莞市PM_(2.5)污染传输过程.结果显示,该时段共有6条长、短距离污染传输路径,污染物主要来自东莞市东、东北及东南方向,途经其上风向区域(惠州、深圳和广州等)传输至东莞;惠州是各主导上风向出现频率最高的城市,因而其区域传输对东莞PM_(2.5)的贡献也较大,深圳次之.  相似文献   

6.
本研究结合大气环境观测数据,应用潜在源分析法(PSCF)和浓度权重轨迹分析法(CWT),以及基于WRF-CMAQ模式的传输矩阵和传输通量计算方法,研究分析了2019年秋冬季京津冀典型城市的大气污染特征与成因,量化评估了京津冀地区与周边省份之间的PM2.5传输贡献.结果表明,京津冀地区冬季较秋季污染严重,且重污染时段PM2.5浓度均与相对湿度呈显著的正相关,和风速呈显著的负相关;京津冀典型城市北京、天津和石家庄的潜在源区主要分布在京津冀本地、山西、内蒙古中部地区和山东地区,这与CWT结果基本吻合.京津冀各省域的PM2.5以本地排放贡献为主,北京、天津和河北的本地贡献率范围为54.33%~66.01%,京津冀受区域外传输的贡献率范围为0.11%~26.54%.传输通量结果表明,冬季PM2.5的传输主要受高空西北气流的作用,尤其清洁天气,高风速驱动清洁气团流入;秋季则主要受低空东南气流作用;传输通量呈现出显著的垂直分布特征,高空区域传输作用更为活跃,传输通量的流入/流出以及垂直分布与污染级别和RH呈现非线...  相似文献   

7.
利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气流输送的存在为北京地区PM_(2.5)形成提供了有利条件,NAQPMS模式能够合理的再现北京大气污染物时空变化,细颗粒物PM_(2.5)和可吸入颗粒物PM_(10)模拟与观测数据相关系数达0.71,模拟数据在观测数据两倍范围内占比(FAC2)达65%.源解析结果表明,在不考虑临时实施减控措施下,11月18日区域外输送对北京PM_(2.5)浓度贡献为55.25%,区域内输送贡献为44.75%,北京东北区域PM_(2.5)外地源主要为河北中部、河北南部、天津和山东,所占贡献为9.67%、9.01%、7.90%和7.99%.污染物主要来源为生活源、交通源和工业源,分别占比39.6%、34.6%和20.0%.而实际上北京在唐山、保定采取一系列控制措施后仍在研究时段内出现高PM_(2.5)浓度,意味着在同样天气形势下需要对河北中部、河北南部、天津和山东等浓度贡献占比大的城市加强减排管控才能有效减缓高PM_(2.5)浓度的出现.  相似文献   

8.
利用WRF-CMAQ模式对中山市2015年2月一次典型灰霾天气过程进行了数值模拟,并对2月11~12日这一主要污染时段本地和外地污染源的贡献进行了分析和减排评估.WRF-CMAQ模式能很好地模拟出该时段的气象条件、PM_(2.5)浓度以及能见度的变化过程.这次霾污染主要是受弱冷空气影响引起的,广州佛山、中山本地以及广东省外排放源对中山PM_(2.5)浓度的贡献率分别为33%、30%和27%,外地源的贡献相当大.中山本地工业源和农业源对中山PM_(2.5)的贡献分别为13%和8%,而广佛排放源中,工业源和农业源对中山PM_(2.5)的贡献率分别为20%和7%.对中山和广佛地区农业源减排30%、50%和70%后,中山的PM_(2.5)浓度分别下降6%、10%和15%,而对工业排放实施相同幅度的减排后,PM_(2.5)浓度分别下降11%、18%和23%.随着减排力度的增加,减排效率的变化并不明显.减排应在灰霾天气开始加重前实施,在PM_(2.5)浓度达到峰值前后减排的效果最为明显,而当灰霾天气趋于缓解时减排的效果会迅速下降.  相似文献   

9.
应用WRF/Chem模拟河南冬季大气颗粒物的区域输送特征   总被引:3,自引:1,他引:3  
基于WRF/Chem模式,设置多组区域排放源的情景实验定量估算河南、京津冀、山东、山西、安徽和江苏、湖北6个区域人为源排放对河南省2015年12月PM_(2.5)和PM_(10)浓度贡献率,并结合气象资料研究3个代表性城市的污染输送特征.结果表明:河南省冬季PM_(2.5)和PM_(10)主要来源为本省排放,平均贡献率分别为54.83%、61.32%.区域污染输送对河南颗粒物的贡献也占有很大比例,京津冀、安徽和江苏、山东、山西以及湖北对PM_(2.5)平均贡献率分别为11.95%、11.69%、7.95%、7.40%、4.30%,对PM_(10)平均贡献率分别为10.42%、10.03%、7.00%、6.89%、3.80%.PM_(2.5)外来输送率比PM_(10)要高,表明细颗粒物比粗颗粒物更易跨区域长距离输送.冬季长持续时间的污染过程大多受静风或小风控制,省内污染贡献最大,过程结束时伴随着大风,周边区域的污染贡献有所增加.不同城市的颗粒物来源与其地理位置、风速、风向等气象条件密切相关.区域污染来源具有复杂性,改善河南省空气质量是需要整个区域共同面对和解决的问题.  相似文献   

10.
传输指数在合肥市重污染过程中的应用分析   总被引:2,自引:0,他引:2  
利用潜在源区贡献法计算了合肥市2015年冬季传输指数,并基于传输指数和PM_(2.5)浓度将合肥市的重污染过程划分为3类,同时对各类重污染过程进行气象成因分析.结果表明:污染物传输型重污染过程的传输指数明显增大且PM_(2.5)浓度急剧增大;污染物积累型重污染过程的传输指数无明显增大且PM_(2.5)浓度逐渐增大;污染物暴发性排放型重污染过程的传输指数无明显增大但PM_(2.5)浓度急剧增大.污染物传输型重污染过程主要是高压南下迫使北方重污染气团输送引起的;污染物积累型重污染过程主要是静稳的天气形势导致污染物堆积造成的;污染物爆发性排放型重污染过程是由污染物暴发性排放而无法及时扩散引起的.  相似文献   

11.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   

12.
利用第三代空气质量模型CMAQ对广东省佛山市2014年11月大气PM_(2.5)浓度进行模拟,结合观测数据比对分析,显示模型对PM_(2.5)具有良好的模拟性能.通过敏感性分析,研究了佛山本地各污染源对PM_(2.5)浓度的相对贡献以及周边地区外来源对佛山PM_(2.5)的影响.结果发现,整个研究时段佛山本地源对PM_(2.5)贡献占主导,平均贡献为64.9%;而污染时段外来源影响增强,如广州对湖涌和惠景城站点平均相对贡献为36.8%,清远对云东海站点相对贡献为18.5%.佛山本地各类源对PM_(2.5)浓度的影响差别明显,污染时段,工业源对湖涌站点相对贡献为54.6%,对其他站点的相对贡献为28.2%~30.2%;流动源对惠景城站点相对贡献为28.9%.通过情景分析,在改善大气环境过程中提出对佛山各类型源的有效削减策略,同时注意城市间协作、区域间联防联控的控制措施.  相似文献   

13.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   

14.
基于2017年全年在某钢厂厂区4个特征点位进行的环境大气PM_(2.5)、PM_(10)和气象参数的在线监测数据,对一年中污染高发/非高发时段钢铁厂厂区内大气颗粒物的浓度水平、粒径分布、日均值变化趋势以及气象因素对浓度的影响进行了分析,并利用大气气团输送模拟及潜在污染源贡献(PSCF)分析探讨了厂区大气PM_(2.5)的外来输送和本地贡献情况。结果表明:2017年全年某钢厂厂区大气颗粒物以细颗粒物为主;4个站点大气PM_(2.5)日均值全年变化趋势一致,污染高发月份质量浓度均值高于非污染高发月份相应值;除2号站可能受到厂区生产活动排放的影响,PM_(2.5)浓度水平略高外,各站点相互间及与周边环境对照点的浓度保持在一致水平,亦未发现明显的污染物输出现象;冬季外来污染源输入对厂区大气PM_(2.5)浓度贡献较显著,其他季节应主要考虑本地排放影响。  相似文献   

15.
基于轨迹聚类,结合全球数据同化系统的气象资料以及青岛市PM_(2.5)的浓度监测资料,对2014年1-12月到达青岛市的气团进行了统计分析。利用潜在源区贡献法(PSCF)和浓度权重法分别分析了青岛市PM_(2.5)的潜在污染来源地区及不同地区对青岛市PM_(2.5)的权重浓度贡献。结果表明:在研究期间内,影响青岛市的气团主要有3类:第1类为来自西北内陆的大陆性气团,第2类为海洋性气团,第3类为区域输送气团;其中来自西北内陆的气团占46%,对应的PM_(2.5)浓度为60.86μg/m3,海洋性气团占39.95%,对应PM_(2.5)浓度为45.53μg/m3;区域传输特征气团占14.05%,对应浓度最高,为62.97μg/m3。PSCF分析结果显示:青岛市PM_(2.5)的潜在污染源地区为河南中部、安徽北部、山东西部、内蒙古中部、京津唐地区及长江三角洲附近黄海区域。CWT分析结果表明:对青岛市PM_(2.5)污染的权重浓度贡献较高的为河南中部地区、山东与河北交界地区,蒙古东部,京津唐地区及黄海南部等。区域传输是青岛市PM_(2.5)污染的重要来源。  相似文献   

16.
对北京2015年11月26日~12月2日出现的PM_(2.5)严重污染过程进行研究,分析了此次事件的污染特征和气象条件,结合HYSPLIT模型,用聚类方法对研究期间抵达北京的地面(500m)和高空(3000m)逐时72h气流后向轨迹聚类,并分析了地面和高空方向上气流轨迹对北京PM_(2.5)浓度的影响.运用潜在源贡献因子分析法和浓度权重轨迹分析法分别模拟了此次PM_(2.5)的主要潜在源区.结果表明,研究期间,北京PM_(2.5)小时均浓度数值变化较大.低温,高湿度和微风为北京PM_(2.5)严重污染过程的出现创造了适宜条件.不同方向气流轨迹对北京PM_(2.5)的影响在空间上存在显著差异.西北方向气流是影响北京PM_(2.5)浓度的主要气流轨迹,而地面来自南部的气流对北京PM_(2.5)浓度的影响也不能忽视.对北京PM_(2.5)的WPSCF和WCWT分析表明,蒙古国中西部、新疆东部、内蒙古中西部、山西北部、河北和山东北部对北京PM_(2.5)质量浓度贡献分别在0.7,200μg/m3以上,表明这些地区是影响此次北京PM_(2.5)的重要潜在源区.  相似文献   

17.
判断某一地区PM_(2.5)来自内源和外源的比例,是大气污染防治的重要问题。该文以东莞市为例,构建了计算区域PM_(2.5)内源外源贡献率的集对分析方法。清溪地区自身的污染排放少,污染物浓度低;又由于地理、气象等原因,该地PM_(2.5)浓度主要由东莞其他地区污染物传输贡献,受东莞市以外地区影响较小,故清溪站PM_(2.5)浓度能基本反映东莞PM_(2.5)的本底浓度。依据本底浓度,把各污染物组分的浓度分为内源段和内外源混合段后,利用东莞5个监测站点源解析样本可分别构造样本集合A与评价等级集合B。根据B集合对混合段的数据进行集对分析,求出各站点污染物组分的浓度与内源、外源的联系度,即贡献比例。研究表明,内源外源对东莞PM_(2.5)的贡献比例分别为83%和17%,大致符合预期。此法简单有效,为政府控制PM_(2.5)制定污染物减排措施提供参考。  相似文献   

18.
基于NCEP/NCAR全球再分析气象资料和2015-2017年PM_(2.5)浓度,利用HYSPLIT模型研究不同气流轨迹对广州PM_(2.5)浓度的影响,以及污染输送路径和潜在源区空间分布特征。结果表明:(1)广州2015-2017年PM_(2.5)平均浓度为36.5μg/m~3,逐月平均PM_(2.5)浓度1月份最高,为49.3μg/m~3,轻度污染及以上时次比例达15.66%,6月份最低,为20.8μg/m~3,无轻度及以上污染时次。(2)PM_(2.5)平均浓度在不同情景类型下的浓度高低顺序依次为:污染日干季清洁日湿季,其中污染日的PM_(2.5)平均浓度是清洁日的近3倍,干季的PM_(2.5)平均浓度是湿季的1.4倍;不同情景类型下的PM_(2.5)浓度日变化特征基本都在白天时段低(16时最低),晚上时段高(21-22时最高),日变化幅度为污染日干季清洁日湿季。(3)在干季,影响广州的气流轨迹路径主要有5类:东北路径、东南路径、西北路径、西南路径及偏西路径,其中第2类东南路径对广州PM_(2.5)平均浓度的贡献最高;而在湿季,影响广州的气流轨迹路径主要有4类:偏南路径、东南路径、偏北路径及西南路径,其中第3类偏北路径对广州PM_(2.5)浓度的贡献最高。(4)基于潜在源贡献因子和浓度权重轨迹分析法分析表明,广州PM_(2.5)浓度潜在源贡献较大的区域主要集中在广州东部的东莞、惠州、深圳、肇庆、中山等周边地区,该研究可为确定广州污染潜在源贡献区以及区域联防联控提供参考。  相似文献   

19.
本研究利用GRAPES-CUACE气溶胶伴随模式,对2015年11月27日~12月2日北京市一次高浓度PM_(2.5)污染过程进行了敏感性分析,显示了伴随模式在追踪重点排放源区及关注敏感排放时段等方面的优越性.研究结果表明:本次污染事件所关注的北京市PM_(2.5)峰值浓度是北京市本地排放源和周边省市排放源共同作用的结果.从累积敏感系数来看.目标时刻前23h内,本地源贡献占主导,PM_(2.5)峰值浓度对本地排放源响应迅速,目标时刻前5h,本地源对峰值浓度的贡献达到最大,逐时敏感系数峰值为9.4μg/m~3.周边源贡献表现为周期性波动,逐时敏感系数在目标时刻前9,29,43h,出现3次峰值,分别为6.66,6.24,1.74μg/m~3,伴随着偏南风,周边源在目标时刻前1~57h内持续不断地向北京市输送污染物.不同距离的周边源对目标时刻PM_(2.5)峰值浓度的影响时段和程度不一样,目标时刻前72h内,北京、天津、河北及山西排放源对目标时刻PM_(2.5)峰值浓度的累积贡献比例分别为31%、9%、56%及4%;从逐时敏感系数来看,天津源贡献的主要时段为目标时刻前1~33h,逐时敏感系数峰值出现在目标时刻前9h,为2.10μg/m~3,山西源贡献的主要时段为目标时刻前17~33h,逐时敏感系数峰值出现在目标时刻前27h,为0.71μg/m~3,河北源贡献的主要时段为目标时刻前1~57h,逐时敏感系数呈现周期性波动,出现3次峰值,分别为4.55,5.31,1.59μg/m~3.  相似文献   

20.
京津冀郊区站点秋冬季大气PM2.5来源解析   总被引:3,自引:0,他引:3  
王彤  华阳  许庆成  王书肖 《环境科学》2019,40(3):1035-1042
为了增进对京津冀地区大气PM_(2.5)来源情况的认识,于2014~2015年秋冬季在京津冀地区4个郊区站点进行了PM_(2.5)的采样,并用化学质量平衡模型(chemical mass balance model,CMB)进行了PM_(2.5)源解析工作.结果表明:二次颗粒物(36%~58%)、交通(8%~26%)、民用燃煤(8%~16%)和生物质燃烧(5%~16%)是京津冀郊区站点秋冬季PM_(2.5)的主要贡献源.其中,二次硝酸盐是大部分站点秋冬季PM_(2.5)的首要贡献源(11%~27%).不同污染程度的源解析显示,冬季各站点各污染源在重污染天的贡献变化趋势的同步性不如秋季明显,且秋季二次源在重污染天的贡献增加值(47. 2~115. 7μg·m~(-3))明显高于一次源(29. 5~43. 4μg·m~(-3)),但此现象在冬季不显著.对比北京市城区源解析结果,发现郊区燃煤总贡献率较为相似,但郊区燃煤源中多以民用燃煤为主,这说明对于京津冀城郊地区,控制民用燃煤源对PM_(2.5)污染控制有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号