首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
成都冬季PM2.5化学组分污染特征及来源解析   总被引:1,自引:0,他引:1  
2017年1月1~20日在成都地区分昼夜对PM_(2.5)进行连续膜样品采集,并在实验室测定了其主要化学组分(水溶性离子和碳质组分)的质量浓度.观测期间,PM_(2.5)的平均质量浓度为(127.1±59.9)μg·m~(-3);总水溶性离子的质量浓度为(56.5±25.7)μg·m~(-3),其中SO2-4、NO-3和NH+4是最主要的离子,质量浓度分别为(13.6±5.5)、(21.4±12.0)和(13.3±5.7)μg·m~(-3),一共占到了水溶性离子的85.6%;有机碳(OC)和元素碳(EC)的平均质量浓度分别为34.0μg·m~(-3)和6.1μg·m~(-3),分别占PM_(2.5)质量浓度的26.8%和4.8%.昼夜污染对比显示,PM_(2.5)白天和夜晚质量浓度分别为(120.4±56.4)μg·m~(-3)和(133.8±64.0)μg·m~(-3),夜间污染更为严重.SO2-4、NO-3和NH+4白天浓度高于夜间,这与白天光照促进了二次离子的形成有关;而Cl-、K+、OC和EC浓度夜间明显升高,可能是受夜间煤和生物质燃烧排放增加的影响.通过对近年来成都冬季PM_(2.5)化学组分的研究进行文献总结和比较后发现,SO2-4浓度显著降低,从2010年的50.6μg·m~(-3)降低到2017年的13.6μg·m~(-3);而NO-3浓度变化不大,维持在20μg·m~(-3)左右.PM_(2.5)中离子酸碱平衡分析表明,成都冬季PM_(2.5)由于NH+4的相对过剩而呈现出碱性,与以往呈偏酸性结果存在差异.对成都冬季NO-3/SO2-4的比值进行计算,NO-3/SO2-4平均值为1.57,表明移动源对PM_(2.5)污染影响更大.OC与EC的相关性表明,白天和夜间OC与EC的相关系数分别为0.82和0.90(P0.01),OC与EC来源具有一致性.SOC估算结果显示,白天和夜间SOC浓度分别为8.5μg·m~(-3)和11.9μg·m~(-3),占到OC的28.1%和31.8%.K+/EC平均值为0.31,并且K+与OC之间相关系数为0.87(P0.01),说明生物质燃烧对成都冬季碳质气溶胶有一定影响.主成分分析表明,成都冬季PM_(2.5)主要来源于燃烧源(燃煤、生物质燃烧等)、二次无机污染源以及土壤和扬尘源,其贡献率分别为32.8%、34.5%和21.5%.  相似文献   

2.
于2015年春季和冬季在北京、唐山市区进行了大气环境PM_(2.5)样品采集,分析了PM_(2.5)的污染特征和来源。北京、唐山市区冬季PM_(2.5)质量浓度分别为93.9,104.1μg/m~3,是春季的1.1和1.5倍;各采样点春、冬季水溶性无机离子可占PM_(2.5)的43.1%~45.4%和52.0%~54.2%。OC、EC和SOC浓度均呈现出冬季大于春季的变化规律,冬季SOC浓度较高主要是由于采暖燃煤导致前体物浓度升高,不利于扩散的气象条件使污染物易发生大气氧化反应。分析结果表明:扬尘源、移动源、燃煤源和生物质燃烧是各采样点PM_(2.5)的主要来源,唐山市区的生物质燃烧源贡献(21.148%~23.147%)要明显大于北京市区(16.900%~18.150%),因此对于唐山市区要加强生物质燃烧的控制。  相似文献   

3.
为了解APEC会议期间天津市PM_(2.5)污染特征,2014年11月6日-22日在天津市环境监测中心采集PM_(2.5)样品,分析了水溶性离子、无机元素及碳组分含量。结果表明:APEC会议期间,天津市PM_(2.5)浓度水平为81μg/m3,低于会后114μg/m~3;NO_3~-、SO_4~(2-)和NH_4~+等二次离子在PM_(2.5)中所占比重由会议期间的48.12%下降为会后的42.68%,一次离子所占比重由期间的8.84%上升为会后的14.50%,NO_3~-/SO_4~(2-)比值及硫氧化率(SOR)、氮氧化率(NOR)均高于会后。总无机元素浓度及其在PM_(2.5)中的占比均明显低于会后。有机碳(OC)和元素碳(EC)的浓度及在PM_(2.5)中的占比低于会后,但OC/EC比值及二次有机碳(SOC)在OC中所占比重高于会后。说明APEC期间天津市PM_(2.5)中二次反应较为明显,机动车排放对PM_(2.5)的贡献相对突出,城市扬尘得到明显控制。  相似文献   

4.
基于四川省自贡市2015年9月-2016年9月的大气颗粒物采样数据,利用离子色谱仪对其中8种水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、Na~+、K~+、Cl~-、Ca~(2+)和Mg~(2+))进行了浓度测定。分析结果表明,自贡市PM_(10)平均浓度为(88.4±59.2)μg/m~3,PM_(2.5)为(76.2±51.7)μg/m~3,各季节PM_(2.5)/PM_(10)的浓度比值均大于80%,说明自贡市大气颗粒物污染以PM_(2.5)为主;水溶性离子是颗粒物的主要化学组分,其总质量浓度对PM_(10)和PM_(2.5)的贡献率分别为40.3%和42.7%,其中SNA(二次水溶性无机离子,SO_4~(2-)、NO_3~-和NH_4~+)、Cl~-、K~+、Ca~(2+)、Na~+和Mg~(2+)在PM_(2.5)的占比分别为39.5%、1.8%、1.2%、0.5%、0.3%和0.04%;SO_4~(2-)是自贡市春季和秋季污染天主要来源,其在PM_(2.5)水溶性离子中的贡献率均为45.5%,NO_3~-对应的贡献率分别为22.3%和23.6%,冬季污染天SO_4~(2-)和NO_3~-的贡献率分别为33.5%和35.7%,NO_3~-的贡献率显著上升。利用因子分析法对PM_(2.5)中水溶性离子进行源解析发现,其来源主要为二次污染源、燃烧源、农业源以及道路扬尘源。  相似文献   

5.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

6.
为探讨厦门市冬季大气PM_(2.5)含碳组成特征,于2014-12-10至2015-01-09同步采集了城区和郊区的PM_(2.5)样品。采用热光透射法分析了PM_(2.5)中OC、EC的质量浓度。结果表明,近年来厦门市PM_(2.5)、OC、EC的浓度表现出逐年降低的趋势。城区和郊区的OC平均浓度分别为9.77±1.87和9.17±2.42μg/m~3,EC平均浓度分别为1.87±0.73和2.43±1.10μg/m~3,与国内外其他城市相比,厦门市冬季大气PM_(2.5)中的OC、EC浓度均处于较低水平,人为引起的大气含碳成分污染相对较轻。城区和郊区的OC/EC值均大于2,SOC占OC比例分别高达34.96%、39.03%,厦门大气PM_(2.5)中的OC受到二次污染较严重。PM_(2.5)、OC、EC的分布规律表明,OC、EC受到了除天气条件以外的其他因素如OC和EC污染源种类、源强以及二次转化程度的影响。城区(R2=0.107 9)和郊区(R2=0.341 9)的OC与EC相关性不明显,初步判断厦门市冬季PM_(2.5)中OC和EC的来源较复杂,EC可能主要来自化石燃料和生物质不完全燃烧等一次排放源,OC则主要受到化石燃料燃烧和二次污染的影响,城区污染源还包括烹饪源以及生物质燃烧。  相似文献   

7.
为了探究新乡地区年际间冬季PM_(2.5)组分的变化特征和污染来源,于2015年冬季和2016年冬季分别在新乡市区进行连续1个月的膜采样,测定PM_(2.5)质量浓度、金属元素含量及其水溶性离子成分含量,并结合气象因素进行分析.结果表明,新乡地区2015年和2016年冬季采样期间PM_(2.5)的质量浓度日均值分别为226μg·m~(-3)和224μg·m~(-3),污染水平较高.观测期间,新乡冬季PM_(2.5)中Cd和Pb金属元素富集明显,富集因子超过1000.且与2015年相比,2016年金属元素(除Ag和Ni)浓度下降约7. 83%~73. 33%,富集程度均趋于降低.水溶性离子以SO_4~(2-)、NO_3~-和NH_4~+这3种为主,2016年在PM_(2.5)中占比上升25. 1%.综合两种成分分析,新乡地区的PM_(2.5)污染呈现出金属污染向二次水溶性离子污染转移的趋势.综合PCA和PMF源解析结果显示,新乡市冬季有4种主要排放源,即尘土、二次源、工业源和化石燃料燃烧源,2015年冬季主要来源是土壤和建筑扬尘混合源,贡献率37. 46%,2016年主要来源是交通及工业生产中的二次气溶胶污染源,贡献率为34. 94%.  相似文献   

8.
为研究南京北郊大气PM_(2.5)中水溶性有机碳(WSOC)的浓度及来源特点,在冬、夏季分别采集PM_(2.5)样品,还同步收集臭氧(O_3)浓度与相对湿度(RH)数据,分析了PM_(2.5)、有机碳(OC)、水溶性有机碳(WSOC)浓度特征,并对WSOC冬、夏季来源及其二次来源差异进行了探讨.结果显示,南京北郊冬季大气污染水平明显高于夏季且来源更复杂,与冬季静稳的天气条件及化石燃料和生物质燃烧排放较严重有关.冬季PM_(2.5)平均值为(136.7±42.4)μg·m~(-3),OC、WSOC浓度分别为(13.4±4.4)、(8.5±3.1)μg·m~(-3);夏季PM_(2.5)、OC、WSOC平均浓度分别为(61.5±14.6)、(6.7±2.1)、(4.6±1.7)μg·m~(-3).冬、夏季WSOC/OC值分别为67%±20%、69%±13%,且二次有机碳(SOC)与WSOC显著正相关,说明二次来源对WSOC有显著影响.冬季WSOC与O_3的负相关性不显著,与RH显著正相关;而夏季WSOC与O_3、RH的相关性正好与冬季相反,说明冬、夏季二次WSOC形成途径存在差异.冬季二次WSOC可能主要来自液相氧化,夏季可能主要来自光化学氧化.通过主成分因子分析法进一步确定南京北郊冬、夏季WSOC分别主要来源于二次来源和生物质燃烧、汽车尾气和扬尘.  相似文献   

9.
为研究典型物流城市临沂市冬季重污染天气过程中PM_(2.5)化学组分特征,探讨污染成因,于2016年12月~2017年1月在6个采样点连续采集28 d的PM_(2.5)样品,并对其离子、元素、碳组分进行分析.采样期间PM_(2.5)质量浓度均值(145. 2±87. 8)μg·m~(-3),日均值超标率为82%; 2次污染过程中PM_(2.5)均值浓度分别为(187. 3±79. 8)μg·m~(-3)和(205. 3±92. 0)μg·m~(-3),为《环境空气质量标准》(GB 3095-2012)年均二级标准的5. 4和5. 9倍.化学组分质量重构结果显示二次无机离子(SNA)是冬季PM_(2.5)的主要组分(所占质量分数为51. 2%),其次为有机物OM(23. 8%),再次为矿物尘MIN(12. 7%).结合污染过程中化学组分的变化趋势和累积速率发现,第1个污染过程中SNA和OM是引起PM_(2.5)浓度增加的原因之一,第2个污染过程中SNA是导致污染的主因,硫氧化率(SOR)、氮氧化率(NOR)和OC/EC比值的日均变化趋势进一步验证了该结论. PMF源解析结果表明,临沂市冬季大气PM_(2.5)的首要源类为二次颗粒物和生物质燃烧混合源(分担率50. 0%),其次为燃煤源(16. 8%)、机动车(12. 9%)和城市扬尘(10. 0%),再次为工业源(5. 3%)和土壤尘(5. 0%). 2次污染过程中二次颗粒物的贡献较之冬季平均有明显增加,说明不利气象条件下二次颗粒物的生成、累积是导致重污染期形成的主因.  相似文献   

10.
为研究华北平原细颗粒物(PM_(2.5))的组成特征及来源,基于CAREBEIJING-NCP 2014大型观测项目,于2014年夏季在北京城区和河北郊区望都进行了同步观测,分析了两地PM_(2.5)中水溶性离子、元素、有机碳(OC)和元素碳(EC).结果表明,采样期间望都站点PM_(2.5)平均质量浓度为(71.47±38.04)μg/m~3,高于北京城区(51.44±30.94)μg/m~3,PM_(2.5)中各化学组分浓度也均表现为望都高于北京,二次无机离子(硫酸盐、硝酸盐及铵盐)在两地PM_(2.5)中占比最高,约为60%.PM_(2.5)中多种元素浓度也表现为望都均高于北京,但富集因子分析表明,北京市PM_(2.5)中元素富集因子更高.来源分析表明,两地PM_(2.5)中元素均受到工业源和尘源的影响;此外,观测期间两地均受到生物质燃烧影响.后向轨迹分析表明,当到达两地的气团来向相同时,北京与望都PM_(2.5)浓度水平和化学组成呈现相似性,但当气团来向不同时,两地污染特征差异较大.  相似文献   

11.
为研究盘锦市秋季PM_(2.5)中水溶性离子污染特征及来源,于2016年10月在盘锦市开发区、文化公园和第二中学采集PM_(2.5)样品,用离子色谱分析其水溶性离子.同时,分析了PM_(2.5)及水溶性离子浓度特征,并通过离子平衡计算、相关性分析和聚类分析对其污染特征和来源进行研究.结果表明:盘锦市秋季PM_(2.5)平均质量浓度为(52.71±19.44)μg·m~(-3),低于环境空气质量标准(GB 3095—2012)日均浓度限值(75μg·m~(-3)),不同点位之间表现为:开发区第二中学文化公园.开发区、文化公园和第二中学的水溶性离子总质量浓度分别为13.64、13.16和13.19μg·m~(-3),分别占PM_(2.5)浓度的22.83%、29.72%和24.36%,各点位均表现为NO~-_3、SO■和NH~+_4质量浓度较大.阴阳离子当量比值(AE/CE)均大于1,表明采样期间盘锦市颗粒物整体偏酸性.离子间相关关系分析显示,SNA的主要存在形式为(NH_4)_2SO_4、NH_4NO_3和KNO_3等.NO~-_3/SO■的均值为1.41,说明移动源对PM_(2.5)的贡献大于固定源.通过聚类分析得出,盘锦市秋季PM_(2.5)中水溶性离子主要来源于气态污染物的二次转化、生物质和化石燃料燃烧及土壤扬尘或建筑扬尘排放.  相似文献   

12.
2016年1月18—27日,通过采取南充市城区10个PM_(2.5)样品,测定了其中的OC、EC、水溶性无机离子、无机元素浓度,并探讨南充市PM_(2.5)各组分的特征及来源。结果表明:OC、EC相关性较高(R~2=0.96),说明OC、EC来源相似,以一次排放的污染为主;NO_3~-/SO_4~(2-)的平均值为1.27,表明PM_(2.5)主要受移动源的影响;富集因子分析表明,Ca、Zn、Be的EF值>10,主要来源于人为活动造成的污染。主成分分析结果进一步表明,南充市冬季PM_(2.5)主要来源有燃烧源、二次源、建筑扬尘和土壤扬尘。  相似文献   

13.
为探究济南市大气气溶胶中化学组分的季节变化特征,于2015年夏季、冬季分别连续进行1个月的PM_(2.5)样品采集,并分析无机离子、碳质组分与水溶性二次有机碳(WSOC)的组成、浓度水平及来源.结果表明,济南市冬季PM_(2.5)的质量浓度[(158.3±95.3)μg·m~(-3)]约为夏季[(75.3±25.9)μg·m~(-3)]的2倍,在我国其浓度处于中上等水平.无机离子的总浓度呈夏低冬高的季节变化特征,其中SO_4~(2-)、NO_3~-、NH_4~+是浓度最高的3种离子,且这3种离子的相关性均较好,NH_4~+在夏季和冬季均以(NH_4)_2SO_4和NH_4NO_3的形式存在.大气中存在较高程度的SO_2和NO_2的二次氧化,其中硫氧化率(SOR)呈夏高冬低的变化特征,而氮氧化率(NOR)呈相反的季节变化特征.通过分析PM_(2.5)中阴、阳离子电荷平衡可知,PM_(2.5)呈弱碱性.基于热力学模型ISORROPIA-Ⅱ,结果表明冬季PM_(2.5)的酸性比夏季强.OC与EC浓度均呈夏低冬高的变化特征,由OC/EC的比值、WSOC/OC的比值和估算的二次有机碳(SOC)的浓度可知,夏季二次污染的程度比冬季更为严重.主成分分析(PCA)结果表明,济南市夏季无机离子主要来自二次氧化及生物质燃烧,而冬季无机离子主要来自煤炭燃烧及其产生的前体物经光化学氧化形成的二次污染物.  相似文献   

14.
2016年1月18—27日,通过采取南充市城区10个PM_(2.5)样品,测定了其中的OC、EC、水溶性无机离子、无机元素浓度,并探讨南充市PM_(2.5)各组分的特征及来源。结果表明:OC、EC相关性较高(R~2=0.96),说明OC、EC来源相似,以一次排放的污染为主;NO_3~-/SO_4~(2-)的平均值为1.27,表明PM_(2.5)主要受移动源的影响;富集因子分析表明,Ca、Zn、Be的EF值>10,主要来源于人为活动造成的污染。主成分分析结果进一步表明,南充市冬季PM_(2.5)主要来源有燃烧源、二次源、建筑扬尘和土壤扬尘。  相似文献   

15.
长沙市秋季PM2.5中水溶性离子特征及其来源解析   总被引:3,自引:0,他引:3  
为探究长沙市秋季PM_(2.5)水溶性无机离子组成特征和来源,于2017年9月~11月在长沙城区连续采集大气颗粒物PM_(2.5)样品共85个,并用离子色谱仪分析样品中的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)。结果表明,长沙市秋季PM_(2.5)质量浓度的平均值为56. 3±39. 6μg/m~3,总水溶性无机离子质量浓度平均值为29. 47±19. 10μg/m~3,占PM_(2.5)的52. 3%,其中NO_3~-、SO_4~(2-)、NH_4~+是PM_(2.5)中最主要的离子成分。霾天PM_(2.5)平均质量浓度约是清洁天的3倍,NO_3~-、NH_4~+、K~+、Cl~-四种离子的快速增长对霾天PM_(2.5)中离子的贡献最大。由PMF模型解析可知,秋季大气PM_(2.5)主要来源于机动车尾气和燃煤源,而扬尘、生物质燃烧源、工业源和海盐的贡献不到30%。长沙市秋季大气污染呈现机动车尾气等移动源和燃煤等固定源的混合型污染为主。  相似文献   

16.
鼎湖山大气颗粒物中OC与EC的浓度特征及粒径分布   总被引:1,自引:1,他引:0  
李安娜  温天雪  华维  杨员  孟泽  胡波  辛金元 《环境科学》2020,41(9):3908-3917
为了解华南背景区域鼎湖山站碳质气溶胶的浓度水平与来源,采用DRI Model 2001A热/光碳分析仪测定了鼎湖山站大气颗粒物分级样品中的有机碳(OC)与元素碳(EC)浓度水平,并分析了碳质组分的浓度特征和粒径分布.结果表明,在PM_(1.1)、 PM_(2.1)和PM_(9.0)中,鼎湖山OC的平均质量浓度分别为(5.6±2.0)、(7.3±2.4)和(12.8±4.0)μg·m~(-3), EC的平均质量浓度分别为(2.3±1.4)、(2.7±1.6)和(3.4±1.7)μg·m~(-3). PM_(1.1)和PM_(2.1)中OC分别占PM_(9.0)中OC的43.8%和57.0%, EC占67.6%和79.4%. OC和EC主要富集在细粒子中. PM_(1.1)和PM_(2.1)中OC和EC在秋季最高,OC在冬季最低,EC在夏季最低. PM_(9.0)中OC夏季最高.鼎湖山中碳质气溶胶以OC2、 EC1、 OC3和OC4为主,夏季OC3EC1,生物排放源增强,冬季EC1质量浓度最高,局地的机动车排放源更强.OC和EC在4个季节都呈现双峰型分布,细粒径段峰值位于0.43~0.65μm,粗粒径段峰值出现在3.3~5.8μm. PM_(1.1)和PM_(2.1)中OC以一次排放为主,二次有机碳(SOC)在春季最高[(3.0±1.4)μg·m~(-3)],冬季最低[(1.3±1.4)μg·m~(-3)],春季二次转化更强.鼎湖山大气细粒径段OC主要来自燃煤和机动车排放,粗粒径段主要来自生物源排放,EC主要受到燃煤、机动车排放和扬尘的影响.  相似文献   

17.
成都市西南郊区春季大气PM2.5的污染水平及来源解析   总被引:5,自引:2,他引:3  
为了解成都市西南郊区大气中PM_(2.5)污染特征,于2015年3月1~31日对成都西南郊区大气PM_(2.5)进行膜样品采集,并分析其中的化学组分.结果表明,3月成都市西南郊区大气PM_(2.5)的日均质量浓度为121.21μg·m~(-3),采集的31个有效PM_(2.5)样品中有24个样品日均浓度在75μg·m~(-3)以上,日超标率为77%,该地区3月PM_(2.5)污染严重.在与大气气象要素的关系研究中发现,大气颗粒物PM_(2.5)与大气能见度有着较好的指数关系,与温度、湿度有一定的正相关关系,但相关性并不明显.水溶性阴阳离子中NH~+_4(16.24%)、SO~(2-)_4(12.58%)、NO~-_3(9.91%)占PM_(2.5)的主导地位,NO~-_3/SO~(2-)_4的比值是0.77,表明成都西南郊区固定源的污染要大于移动源的污染,燃煤排放的污染相对于汽车尾气较多.有机碳(OC)/元素碳(EC)比值均大于2.0,表明有二次有机碳(SOC)产生.利用OC/EC比值法估算SOC的质量浓度发现,成都西南郊区3月PM_(2.5)中SOC的平均浓度水平为3.49μg·m~(-3),对OC的贡献率达20.6%,说明成都市西南郊区的OC主要来源于一次排放,且OC与EC的相关性分析显示,其相关系数达0.95,说明OC、EC来源相似且相对稳定,成都市西南郊区春季受局地源排放影响较大,一次排放占主导地位,二次有机碳对OC贡献相对较小,与估算所得的SOC性质一致.利用主成分分析(PCA)方法对成都西南郊区大气中PM_(2.5)进行来源解析,发现成都西南郊区PM_(2.5)的主要污染源为燃煤、生物质的燃烧、二次硝酸盐或硫酸盐、土壤和扬尘源、汽车尾气源、电子生产源以及机械加工源.  相似文献   

18.
利用多点位三维受体模型与后向轨迹模型,研究了漳州市近海与城区两个代表性点位不同季节不同来向气团所载带的PM_(2.5)浓度、化学组分及污染源贡献特征。结果表明:近海与城区两点位PM_(2.5)质量浓度在季节变化上均为夏季低,冬季高(近海点位夏季37.3μg/m~3,冬季52.1μg/m~3;城区点位夏季38.5μg/m~3,冬季86.2μg/m~3);总体而言,近海点位主要受本地气团以及江苏-浙江来向气团影响,城区点位主要受广东省及其近海来向气团影响。在PM_(2.5)化学组成上,近海点位二次无机组分SO_4~(2-)、NO_3~-、NH_4~+均高于城区点位,而城区点位秋季二次有机污染明显高于近海点位。因受河口地形影响,近海点位冬季PM_(2.5)各化学组分均高于城区点位。两点位源解析结果存在季节性差异。在近海点位,春冬季二次无机源贡献最大,夏秋季二次有机源贡献最大;在城区点位,春季建筑尘、夏季二次有机源、秋季地壳尘、冬季二次无机源占比最大。不同来向气团对两点位四季PM_(2.5)分担率分别为:近海点位春季NNE来向的二次无机源(20.5%)、夏季SW来向的二次有机源(14.3%)、秋季NNE来向的二次有机源(10.0%)、冬季NE来向的二次无机源(24.2%);城区点位春季NNE来向的建筑尘(18.0%)、夏季WSW来向的二次有机源(15.9%)、秋季NNE来向的地壳尘(15.4%)、冬季NNE来向的二次无机源(24.3%)。  相似文献   

19.
冬季临安大气本底站气溶胶来源解析及其粒径分布特征   总被引:2,自引:2,他引:0  
利用宽范围粒径谱仪(WPS)、EMS系统、KC-120H中流量采样器、850professional IC型离子色谱分析仪和热/光碳分析仪(DRI2001A)分别观测了临安大气本底站2015年1月9~31日10 nm~10μm气溶胶数浓度粒径分布、常规污染气体浓度、PM_(2.5)浓度及水溶性离子和OC、EC的浓度,利用PMF模式对PM_(2.5)进行来源解析,并分析了不同污染源下气溶胶粒子的谱分布及日变化特征.结果表明,临安大气本底站大气气溶胶数浓度平均为5 062 cm~(-3)·nm~(-1),主要集中在10~400 nm.PM_(2.5)的平均浓度和NO_2、SO_2、CO的平均体积分数分别为123.6μg·m~(-3)、22.6×10~(-9)、34.0×10~(-9)和2.2×10~(-6).水溶性离子以NO_3~-、SO_4~(2-)、NH_4~+为主,平均浓度分别为19.2、15.4和10.8μg·m~(-3),分别占总水溶性离子的37.9%、30.4%、21.4%.OC和EC的平均浓度分别为24.4μg·m~(-3)和6.6μg·m~(-3).冬季临安大气本底站PM_(2.5)主要来自二次相关源、燃煤排放、机动车排放、扬尘和生物质燃烧,贡献率分别为42.3%、21.4%、17.1%、8.7%和10.6%.不同来源气溶胶数浓度谱分布差异较大,二次相关、机动车排放、扬尘和生物质燃烧气溶胶数浓度谱均为单峰型分布,峰值分别位于120、50、100和90nm.燃煤颗粒物数浓度谱分布为双峰型分布,峰值分别位于25 nm和100 nm,浓度为19 842 cm~(-3)·nm~(-1)和18 372 cm~(-3)·nm~(-1).二次相关源、燃煤源、机动车排放、扬尘和生物质燃烧表面积浓度谱均为三峰型分布,最大峰值分别位于650、210、160、180和575 nm.不同排放源气溶胶颗粒物数浓度和表面积浓度日变化特征基本一致,多呈双峰型分布,主要受边界层日变化和人类活动影响.  相似文献   

20.
为探究郑州市PM_(2.5)中水溶性离子污染特征,本研究自2017年12月1日至2018年11月30日对郑州市PM_(2.5)中水溶性离子进行为期1a的高时间分辨率持续观测,并基于高时间分辨率观测数据分析水溶性离子特征并对其进行来源分析.结果表明,观测期间郑州市总水溶性离子平均质量浓度为42. 7μg·m~(-3),各离子质量浓度从大到小分别为:硝酸根(17. 7μg·m~(-3))、硫酸根(10. 2μg·m~(-3))、铵根(9. 0μg·m~(-3))、氯离子(2. 3μg·m~(-3))、钾离子(1. 3μg·m~(-3))、钠离子(1. 3μg·m~(-3))、钙离子(0. 8μg·m~(-3))和镁离子(0. 1μg·m~(-3)).总水溶性离子质量浓度表现为冬季最高,秋季略高于春季,夏季最低的季节特征,在PM_(2.5)中的占比表现为秋季(65. 2%)冬季(52. 5%)夏季(48. 2%)春季(43. 0%).除钠离子和钙离子外,其余水溶性离子质量浓度均表现为冬季秋季春季夏季的季节变化特征,而钠离子表现为秋季最高,夏季最低的季节变化特征,钙离子表现为秋季最高,冬季最低的季节变化特征.总水溶性离子质量浓度全年及春季、夏季和秋季均表现为单峰分布的日变化特征,冬季没有显著的日变化特征.观测期间二次离子(硫酸根、硝酸根和铵根)质量浓度占PM_(2.5)的43. 8%,是PM_(2.5)的重要组成部分,主要以(NH4)2SO4和NH4NO3的形式存在.观测期间郑州市存在较大程度的二次转化过程,且相对湿度对硫氧化率的影响较大,而温度对氮氧化率的影响较大.观测期间二次离子间具有较好的相关性,钾离子与镁离子和氯离子也表现出较好的相关性.硝酸根、硫酸根和铵根的主要来源是气体污染物的二次转化,镁离子和钙离子通常来源于土壤尘和建筑尘,钾离子是主要的生物质燃烧标识物之一,钠离子来自于海盐和土壤尘,氯离子不仅来自于海盐,也可来自生物质燃烧和化石燃料燃烧.主成分分析结果表明观测期间郑州市PM_(2.5)中水溶性离子主要受二次转化、燃烧源及土壤或建筑扬尘源排放影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号