首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Field microplots were treated with 141 and 282 ppm fensulfothion and 37.1 and 74.2 ppm fensulfothion sulfone. These concentrations are equivalent to field treatment rates of 8.48 and 16.96 kg Al/ha, fensulfothion, and 2.23 and 4.47 kg Al/ha, fensulfothion sulfone, respectively, for banded application (10 cm wide, rows 80 cm apart). The half‐lives in a sandy loam soil were 30–39 and 14–23 days, respectively. Fensulfothion sulfone and sulfide were the main derivatives found in fensulfothion treated soil.

The maximum levels of these derivatives were 21.22 and 22.95 ppm, respectively for the 8.48 kg/ha treatment and 33.90 and 42.45 ppm, respectively, for the higher treatment, which occurred between 30–60 days.

Carrots appeared to take up more fensulfothion from soil than rutabagas or radishes. The residue levels at harvest decreased in the order carrot peel > pulp > rutabagas root > peel > pulp. Residue levels of fensulfothion and sulfone in radishes were similar to those found in rutabagas. The ratio sulfoxide/sulfone in rutabagas ranged from 0.4–1.5 and in carrots from 1.7–7.6. This phenomenon is thought to be due to oxidative enzyme systems present in rutabagas. Dimethyl phosphorothioic acid, but not dimethyl phosphoric acid was detected (max. 1.33 ppm) in some rutabagas samples but not in carrots.  相似文献   

2.
Chlorpyrifos (Lorsban emulsifiable concentrate) was applied at 3.4 kg AI/ha and incorporated into sand and muck soil contained in small field plots. Soil samples were taken at intervals over 2 yr. Radishes and carrots, seeded yearly, served as indicator crops for absorption of insecticide residues. Samples were extracted and analyzed, by gas-liquid chromatography, for chlorpyrifos, oxychlorpyrifos, and 3,5,6-trichloro-2-pyridinol. Chlorpyrifos residues declined rapidly, with 50% of the initial application remaining after 2 and 8 wk in sand and muck, respectively, and 4 and 9% after 1 yr. Pyridinol residues increased to 13 and 39% of the initial chlorpyrifos application in sand and muck after 1 and 8 wk, respectively, and declined thereafter. Oxychlorpyrifos was detected in the 2 soils at very low levels only in immediate posttreatment samples. In the first year of the study low levels (less than 0.1 ppm) of chlorpyrifos and the pyridinol were detected in radishes and carrots.  相似文献   

3.
Soil/water interactions with the insecticide fensulfothion and its sulfide and sulfone metabolites and described. Adsorption to, and desorption from four soils were studied. There was a general inverse relationship between water solubilities of the three chemicals and their adsorption K values. Order of adsorption was f. sulfide greater than f. sulfone greater than fensulfothion. Adsorption K values correlated significantly with soil organic content. Desorption of fensulfothion and the sulfone were similar whereas the less soluble sulfide desorbed to a lesser extent. To facilitate comparison of desorption tendencies of the three compounds of desorption index was developed. Mobilities through the soils were directly related to the water solubilities of the three chemicals. Mobilities in decreasing order were - fensulfothion greater than f. sulfone greater than f. sulfide. Persistence of fensulfothion was similar in both sterile and non-sterile natural water - about 50% remaining at the end of the 16 wk experiment. Under reducing conditions fensulfothion disappeared from water in 8-12 wk with almost complete conversion to the sulfide.  相似文献   

4.
Aldicarb, Temik 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredient)/ha and carrots (Daucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 61 to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot greater than in soil greater than in hydroponic solution.  相似文献   

5.
A granular formulation of terbufos (Counter 15G) was added in-furrow at time of planting of wheat and barley. Foliage collected at several times was analyzed for total terbufos residues as terbufoxon sulfone. Maximum residues from application of 1.5 and 3.0 kg/ha were 7.4 and 10.6 ppm, respectively, in wheat foliage samples collected 10 days postseeding. Wheat foliage collected at 53 days postseeding had residues averaging 0.32 and 0.58 ppm from the 1.5 and 3.0 kg/ha applications, respectively. In 1985 residues in barley were consistently less than in wheat in 1985 with 4.4 and 7.0 ppm detected in foliage collected 10 days post application from the 1.5 and 3.0 kg/ha applications, respectively and 0.21 and 0.34 ppm detected at 53 days. Grain samples had 0.01 ppm or less residue at harvest. Straw samples had up to 0.75 ppm total terbufos residues at harvest.  相似文献   

6.
Abstract

Potatoes were grown during 1992 in 2 m2 plots of loam which had received 1, 2 or 3 annual treatments of Di‐Syston 15G, equivalent to 3.36 kg AI/ha, in furrow at planting. The presence of enhanced degradative activity to the sulfoxide and sulfone metabolites of disulfoton in the soil treated in the previous two years was confirmed by laboratory tests prior to the 1992 treatments. Soil, seed potato and foliage from the three treatments were analyzed for disulfoton and its sulfoxide and sulfone metabolites for 12 wk following planting/treatment. Disulfoton was the major insecticidal component of the soil, a minor component of the seed piece and was not detected (<0.02 ppm) in potato foliage. Disulfoton concentrations in each of the three substrates sampled were similar for the three treatments. Disulfoton sulfoxide and sulfone were the major insecticidal components of the seed piece and foliage. Their maximum concentrations in 1st year soil, seed pieces and foliage were ca. 2x, 2x and 6x, respectively, those measured in the 2nd and 3rd year treatments. The results demonstrate that enhanced microbial degradation of relatively minor insecticidal compounds in the soil can profoundly affect insecticide levels in the plant when these compounds are the major insecticidal components accumulated. The broader implications for crop protection using soil‐applied systemic insecticides are discussed.  相似文献   

7.
Abstract

Aldicarb, Temik® 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredent)/ha and carrots (Caucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/ 50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 6l to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot > in soil > in hydroponic solution.  相似文献   

8.
Abstract

Potatoes were grown in Plainfield sand and muck treated, in furrow, with aldicarb (Temik 15G, 3.36 kg Al/ha). .Soils were contained in 2 mz field plots and had not been treated previously with pesticides. Soil, seed pieces, foliage and tubers were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 12 wk following planting. The disappearance of aldicarb from the soil was accompanied by partial conversion to the sulfoxide and sulfone. After increasing rapidly during the first 2 wk, the aldicarb concentration in the seed piece declined and a similar concentration of aldicarb sulfoxide accumulated which subsequently slowly disappeared. Aldicarb sulfoxide was the major insecticidal material in the new foliage. High initial concentrations, observed at 3–4 wk, declined by about 90% after 6 wk. Aldicarb sulfoxide residues of 2–4 ppm in the first new tubers at 6 wk declined by 90% by 12 wk. Potatoes were also grown under greenhouse conditions in Plainfield sand treated with Temik 10G at rates equivalent to 1.68, 3.36 and 6.72 kg Al/ha. Maximum aldicarb sulfoxide concentrations in soil, seed piece and foliage increased with application rate. The sulfoxide was much more persistent in the soil and foliage than in the field experiment indicating the importance of environmental factors to its behaviour in both soil and potato plants.  相似文献   

9.
Abstract

Samples of blueberry foliage and fruits were collected from spray blocks in Ontario after aerial application of fenitrothion and aminocarb at dosage rates of 210 g active ingredient (AI)/ha and 70 g AI/ha respectively. Residues were extracted from the samples by homogenizing with ethyl acetate, cleaned up by microcolumn chromatography using alumina as adsorbent, and analyzed by GLC‐AFID with a glass column packed with 1.5% OV‐17 and 1.95% OV‐210 on 80–100 mesh Chromosorb W‐HP. Average recoveries for fenitrothion and aminocarb from foliage at three fortification levels (1.0, 0.10 and 0.01 ppm) were respectively 99 and 96%. The corresponding values for the fruits were 99 and 95%. Foliage samples collected 1 h post‐spray contained on average 1.13 ppm of fe‐nitrothion and 1.14 ppm of aminocarb. However, residue levels reached below the detection limit (<0.01 ppm) in foliage collected 15 d after treatment. In addition, the fruit samples collected after 15 d post‐spray contained extremely low levels (0.03 ppm for fenitrothion and 0.02 ppm for aminocarb) of residues, and were barely above the detection limit.  相似文献   

10.
Abstract

Fenvalerate EC at 140 g AI/ha was applied 7 times at 2 wk intervals to duplicate plots of Plainfield sand and an organic soil contained in 2.2 x 0.9 m field microplots with and without an onion crop present in 1980 and 1981 respectively. Soil samples were taken immediately before and after each application and at 2, 4, and 6 wk after the last application in 1980. Additional samples were taken at 22 and 34 wk for the 1981 treatment. Concentrations of fenvalerate were determined by glc. In the crop‐free mineral soil, fenvalerate levels declined from. 0.07–0.11 ppm immediately after spraying to 0.01–0.03 ppm after 2 wk; in the organic soil the rate of addition of fenvalerate exceeded the rate of disappearance and the concentration in the soil gradually increased over the 14 wk treatment period to the 0.9–1.0 ppm range. This concentration decreased slowly over the next 10 wk to 0.7–0.8 ppm and was still 0.5–0.7 ppm the following spring. Results were similar for cropped soils. Concentrations in the top third of the 15 cm cores were 6x and 15x those in the middle third for sand and organic soil, respectively. Concentrations, in the onions at harvest were <0.01 ppm.  相似文献   

11.
Abstract

Fensulfothion was incubated in nutrient media with a mixed culture of soil microorganisms obtained from sandy loam. The half life of fensulfothion in both inoculated samples and sterile controls was about 16 wk. There was some conversion to fensulfothion sulfone (16% at 6 wk) in inoculated samples, but not in the controls. Traces of fensulfothion sulfide were found in both inoculated samples (<3%) and controls (<2%) . When 1% ethanol was added to the inoculated nutrient mixture the fensulfothion disappeared rapidly (t½>~1½> wk) with 32% conversion at 20 wk to fensulfothion sulfide.  相似文献   

12.
Abstract

Farm ditches flowing into three important rivers in the Lower Fraser Valley of British Columbia, Canada, were sampled periodically at seven locations from July to December in 1991, to determine the occurrence and levels of seven organophosphorus (OP) insecticides. Based oh sales records for the year, the uses of OP insecticides in this area were as follows: malathion > diazinon > parathion > dimethoate > azinphos‐methyl > fensulfothion, but no sales of chlorfenvinphos. Residues of parathion, diazinon, fensulfothion, dimethoate and chlorfenvinphos were detected at levels ranging from 1 ‐ 7,785 >μg/kg in cropped soils collected from areas adjacent to the sites for sampling ditch water and sediments. Malathion and azinphos‐methyl were not detected in any of the substrates studied, demonstrating their rapid degradation in the environment. Diazinon and dimethoate were consistently found in ditch water at seven locations, with an average concentration of 0.07 μg/L and 0.27 μg/L, respectively. Fensulfothion and parathion, with an average concentration of 0.08 μg/L and 0.17 μg/L, respectively, were sporadically found in ditch water at two locations. In ditch sediments, diazinon was detected at three locations and fensulfothion at two. The average concentrations of these two insecticides were 16 μg/kg and 9 jug/kg, respectively. The potential impact on aquatic organisms of these OP insecticides in ditches is discussed.  相似文献   

13.
Abstract

Potato tubers were applied with radiolabelled lindane (U‐14C γ‐ 1,2,3,4,5,6 hexachlorocyclohexane) at three dose levels 30, 150, and 300 ppm and stored for 30, 60 and 90 days at room temperature. The data revealed that lindane penetrated into the pulp tissues through the epidermal layer. The amounts recovered in the peel were found to increase with a greater storage period up to 60 days followed by a drop at 90 days. On the other hand, there was a slight increase in radioactivity in the pulp tissue from 30 to 60 days followed by significant increase after 90 days. The incorporation of the compound in the tubers was dose independent. Methanol extraction showed binding of about 8.1% and 5.8% ofthe applied dose in peel and pulp tissues, respectively. The insecticide was found to be bioavailable when rats health hazard. It is therefore, desirable to demonstrate that the quantity of the terminal residues may be safe for the consumer. In the present investigation an attempt was made to determine the fate and bioavailability of lindane when applied to stored potato tubers.  相似文献   

14.
This study was designed to investigate the effect of long-term (11 years) ammonium nitrate additions on standing mass, nutrient content (% and kg ha(-1)), and the proportion of the added N retained within the different compartments of the system. The results showed that more than 90% of all N in the system was found in the soil, particularly in the organic (Oh) horizon. Added N increased the standing mass of vegetation and litter and the N content (kg N ha(-1)) of almost all measured plant, litter and soil compartments. Green tissue P and K content (kg ha(-1)) were increased, and N:P ratios were increased to levels indicative of P limitation. At the lowest treatment, most of the additional N was found in plant/litter compartments, but at higher treatments, there were steep increases in the amount of additional N in the underlying organic and mineral (Eag) horizons. The budget revealed that the proportion of added N found in the system as a whole increased from 60%, 80% and up to 90% in response to the 40, 80 and 120 kg N ha(-1) year(-1) treatments, respectively.  相似文献   

15.
The bulk modulus of elasticity (E) for Pinus contorta (lodgepole pine) x Pinus banksiana (jack pine) hybrids was compared between a site (AI) close to a sour gas processing plant and a control site (AV). The mean bulk modulus of elasticity for branches from AI was 47.5 MPa vs 18.5 MPa for the control site (AV). Site AI had been exposed to S-gas emissions and large amounts of elemental S deposition and had an acidic soil (pH 4.0 at 10 cm depth). During 1981 the needles at AI had more aluminum and iron compared to those at AV (900 ppm vs 390 ppm AI in the 3-year-old needles). Mean leader growth was measured over a 3-year period and was observed to be greater at AI than AV (46+/-7 cm vs 29+/-9 cm for 1988). Histochemically, the needles at AI had higher phenol and lignin content than AV. These results suggest that the S-gas fumigation, S-dust deposition, plus increased concentrations of soluble aluminum and iron had altered the cell wall elastic properties resulting in altered water relations. The implications of this on leaf diffusive resistance and photosynthesis are discussed.  相似文献   

16.
Abstract

Potatoes were grown from cut seed in Plainfield sand treated in‐furrow with disulfoton (Di‐Syston 15G, 3.36 kg Al/ha) in 1983 and from whole seed in similarly treated loam in 1991. Soils were contained in 2 m2 field plots. Soil, seed potato and foliage were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 8–12 wk following planting. Disulfoton disappeared at different rates from the two soils (ksand=0.024 day‐1, kloam=0.056 day‐1) with partial conversion to the sulfoxide and sulfone in both. Larger quantities of the three insecticidal components were absorbed by the seed potato in the cut‐seed/sand combination. The relative amounts of these components in the seed potato also differed between treatments with disulfoton being the largest component of the cut‐seed/sand and smallest in the whole‐seed/loam. Disulfoton sulfoxide and sulfone were the major insecticidal components of the foliage and concentrations in the initial foliage (each ca. 10 ppm) were similar for both treatments. Sulfoxide concentrations in the foliage decreased more rapidly than the sulfone and the decrease in concentration of each of the components was similar for the two treatments.  相似文献   

17.
An experimental study was conducted in order to determine the relationship of nitric oxide (NO) consumption to water-filled pore space in soil. A test system that included the capability to blend gases, test soil samples, and analyze off-gases was used to conduct the study. The experimental set consisted of three replicates at five different levels of soil water content and three different levels of soil nitrogen in a sandy loam soil: unamended soil, soil fertilized at 56.2 kg N per ha (50 lb N acre(-1)), and soil fertilized at 112.3 kg N per ha (100 lb N acre(-1)). The average NO consumption rates were 7.1x10(-13) g-NO cm(-3) soil, 3.5x10(-11) g-NO cm(-3) soil, and 1.5x10(-10) g-NO cm(-3) soil, respectively.  相似文献   

18.
Effects of two "enhanced" treatments (drying and composting mesophilic anaerobically digested (MAD) biosolid) on nutrient leaching were investigated. Repacked sandy or sandy loam textured soil cores amended with fresh, dried and composted MAD biosolid (250 kg N ha(-1)), were investigated under steady-state hydrological conditions. Two 24 h, 4.5 mm h(-1) rainfall events, with a 14-day interval, were simulated using water-tracers. Losses of nitrate from the sandy loam soil during rainfall event 1 (43.9-68.0 mg kg(-1)) were significantly greater (P < or = 0.05) than during event 2 (6.4-11.9 mg kg(-1)). Phosphate losses were significantly greater (P < or = 0.05) during event 2 (up to 0.30 mg kg(-1)) compared to the first (< 0.05 mg kg(-1)). The sand soil showed similar effects. Losses of nitrate-N (percentage of total N applied) from the sand soil were small (around 0.06% for fresh/dried and 0.63% for composted MAD biosolids). Losses of nitrate-N from the sandy loam soil were greater; 4% for fresh and dried and 3% for composted MAD biosolids. This research showed that drying MAD biosolid had little impact on nitrate and phosphate losses from soil compared to fresh MAD biosolid. The effect of composting MAD biosolid on nutrient losses was more variable.  相似文献   

19.
Abstract

The spatial distribution of hexazinone and two primary metabolites were measured in forest soil for two years following the aerial application of a granular formulation, PRONONE 10G, in northern Alberta. Residues were quantified using solid‐phase extraction and capillary gas chromatography. Initial deposition rates of two hexazinone treatments averaged 2.3 ± 0.5 and 4.1 ± 0.8 kg/ha for each triplicated plots. One year after application, residues of hexazinone averaged 0.25 ± 0.09 and 0.40 ± 0.02 kg/ha in 2.3 and 4.1 kg/ha treatment, respectively, in the 0–10 cm surface soil; and were distributed vertically in soil depths of 0–10, 10–20, and 20–30 cm at ratios of 10:11:2 and 10:5:2, respectively, in 2.3 and 4.1 kg/ha treatment. Metabolites A and B amounted to 15 and 30% of hexazinone, respectively. Two years after application, the vertical movement of hexazinone in soil was quantifiable to the 40‐cm depth in both 2.3‐ and 4.1‐kg/ha treatment plots. Trace amounts of hexazinone were detected at 130 cm only in the 2.3‐kg/ha plot, which is likely due to the more freely downward movement of hexazinone to deeper horizons along decayed root channels.  相似文献   

20.
In order to see the effect of time lapse between the last application of methamidophos and harvesting insecticide was applied on lettuce plants (6,84 μCi in one experiment and 4,03 μCi in the other experiment). Analysis of the crops harvested 3 days after last application showed 9,7 ppm residues on leaves, while crops harvested 1 day after application showed residues of 12,7 ppm (25% more). Treatment of tomato plants (39,65 μCi, 1,01 kg/ha) gave residues in fruits 4,92 ppm after 8 days interval between last application and harvesting. 40 days gap between the last application and harvesting leaved residues of 0,7 ppm in fruits which is much less as recommended by FAO/WHO (1 – 2 ppm).Degradation of this insecticide is dependent on the matrix of the soil, this breakdown is observed in the first ten days and than after it remains constant. C-14 radioactivity extracted from soil and plant analysis was methamidophos (92%)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号