首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the effects of recreational use on the soil and vegetation at a site of ecological importance (Nacimiento del Río Mundo, Albacete, Spain). The most visited sites showed increased soil compaction of approximately 50%, bare ground increase to 61 ± 10% and a decrease in richness (from 25 ± 2 to 15 ± 2 species), diversity (from 4.0 ± 0.1 to 2.7 ± 0.4) and stratification of plant species (from 80 ± 11 to 21 ± 4%). The most visited sites had 90% less plant species as compared to the least visited. Intense use was associated with the presence of nitrophilous plant and vegetal species with a morphology adapted to heavy trampling. The recreational areas showed a distribution pattern of impact radiating outwards from the most used and degraded point. At the most visited point, Los Chorros (the spring of the river), the impact radiated outwards for about 20 m. A pilot experiment examining the effects of one-year restriction to visitors for access to a formerly impacted area showed a plant cover increase by anthropic and not by native species of 57 percent units.  相似文献   

2.
In order to evaluate the potential risks of human visitation on macroinvertebrate communities in streams, we investigated the effect of trampling using two short-term experiments conducted in a Brazilian ecotourism karst region. We asked three questions: (a) Does trampling increase the drift rate of aquatic macroinvertebrates and organic matter? (b) Does trampling change the macroinvertebrate community organization? (c) If trampling alters the community structure, is a short time (5 days, a between weekends interval?-?peaks of tourism activities) sufficient for community restructuring? Analysis of variance of richness, total abundance, abundance of the most abundant genus (e.g., Simothraulopsis and Callibaetis), and community composition showed that trampling immediately affects macroinvertebrate community and that the intervals between the peaks of visitation (5 days) are not sufficient to complete community restructuring. Considering that bathing areas receive thousands of visitors every year and that intervals of time without visitation are nearly nonexistent, we suspect that the negative effects on the macroinvertebrate community occur in a cumulative way. Finally, we discuss some simple procedures that could potentially be used for reducing trampling impacts in lotic environments.  相似文献   

3.
Firewood is the basic fuel source in rural Bolivia. A study was conducted in an Andean village of subsistence farmers to investigate human impact on wild firewood species. A total of 114 different fuel species was inventoried during fieldtrips and transect sampling. Specific data on abundance and growth height of wild firewood species were collected in thirty-six transects of 50 ×2 m2. Information on fuel uses of plants was obtained from 13 local Quechua key participants. To appraise the impact of fuel harvest, the extraction impact value (EIV) index was developed. This index takes into account local participants?? appreciation of (1) decreasing plant abundance; (2) regeneration capacity of plants; (3) impact of root harvesting; and (4) quality of firewood. Results suggest that several (sub-)woody plant species are negatively affected by firewood harvesting. We found that anthropogenic pressure, expressed as EIV, covaried with density of firewood species, which could entail higher human pressure on more abundant and/or more accessible species. The apparent negative impact of anthropogenic pressure on populations of wild fuel species is corroborated by our finding that, in addition to altitude, several anthropogenic variables (i.e. site accessibility, cultivation of exotics and burning practices) explain part of the variation in height of firewood species in the surroundings of Apillapampa.  相似文献   

4.
Long-distance pipeline construction results in marked human disturbance of the regional ecosystem and brings into question the safety of pipeline construction with respect to the environment. Thus, the direct environmental impact and proper handling of such large projects have received much attention. The potential environmental effects, however, have not been fully addressed, particularly for large linear pipeline projects, and the threshold of such effects is unclear. In this study, two typical eco-fragile areas in western China, where large linear construction projects have been conducted, were chosen as the case study areas. Soil quality indices (SQI) and vegetation indices (VI), representing the most important potential effects, were used to analyze the scope of the effect of large pipeline construction on the surrounding environment. These two indices in different buffer zones along the pipeline were compared against the background values. The analysis resulted in three main findings. First, pipeline construction continues to influence the nearby eco-environment even after a 4-year recovery period. During this period, the effect on vegetation due to pipeline construction reaches 300 m beyond the working area, and is much larger in distance than the effect on soil, which is mainly confined to within 30 m either side of the pipeline, indicating that vegetation is more sensitive than soil to this type of human disturbance. However, the effect may not reach beyond 500 m from the pipeline. Second, the scope of the effect in terms of distance on vegetation may also be determined by the frequency of disturbance and the intensity of the pipeline construction. The greater the number of pipelines in an area, the higher the construction intensity and the more frequent the disturbance. Frequent disturbance may expand the effect on vegetation on both sides of the pipeline, but not on soil quality. Third, the construction may eliminate the stable, resident plant community. During the recovery period, the plant community in the work area of the pipeline is replaced by some species that are rare or uncommon in the resident plant community because of human disturbance, thereby increasing the plant diversity in the work area. In terms of plant succession, the duration of the recovery period has a direct effect on the composition and structure of the plant community. The findings provide a theoretical basis and scientific foundation for improving the environmental impact assessment (EIA) of oil and gas pipeline construction as it pertains to the desert steppe ecosystem, and provide a reference point for recovery and management of the eco-environment during the pipeline construction period.  相似文献   

5.
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The aim of this study was to assess the impact of anthropogenic disturbance on the partitioning of plant communities (species spectra) across a landcover gradient of community types, categorizing species on the basis of their biogeographic, ecological, and conservation status. We tested a multinomial model to generate species spectra and monitor changes in plant assemblages as anthropogenic disturbance rise, as well as the usefulness of this method to assess the conservation value of a given community. Herbaceous and arborescent communities were sampled in five Azorean islands. Margins were also sampled to account for edge effects. Different multinomial models were applied to a data set of 348 plant species accounting for differences in parameter estimates among communities and/or islands. Different levels of anthropogenic disturbance produced measurable changes on species spectra. Introduced species proliferated and indigenous species declined, as anthropogenic disturbance and management intensity increased. Species assemblages of relevance other than economic (i.e., native, endemic, threatened species) were enclosed not only in natural habitats, but also in human managed arborescent habitats, which can positively contribute for the preservation of indigenous species outside remnants of natural areas, depending on management strategies. A significant presence of invasive species in margin transects of most community types will contribute to an increase in edge effect that might facilitate invasion. The multinomial model developed in this study was found to be a novel and expedient tool to characterize the species spectra at a given community and its use could be extrapolated for other assemblages or organisms, in order to evaluate and forecast the conservation value of a site.  相似文献   

7.
In the Spanish Mediterranean environment, scrub vegetation occupies a greater area than does forest. The impact of wildfire on the scrub vegetation and recovery afterward affects a number of other processes, including water erosion. While recovered vegetation considerably influences soil protection and erosion control, this function has scarcely been studied. This study discusses the behavior and architecture of recovering (or regenerating) typical Mediterranean shrub vegetation and the subsequent impact on soil protection. The study compared two protective forage species (Medicago arborea L. and Psoralea bituminosa L.). The research was performed in field conditions on a set of four experimental plots. A control plot was maintained with no vegetation cover. Runoff and soil loss by water erosion between 1989 and 1992 were studied on each of these plots. The natural vegetation was found to have a more significant protective effect (69.2% decrease in soil loss) than the other species tested. Soil loss on the Medicago plot decreased by 41.7%, and soil loss on the Psoralea plot decreased by 29.3%. That the Psoralea was only recently planted must be considered in evaluating its protective effects.  相似文献   

8.
通过对新疆那拉提高寒草甸天然草地进行围栏(3、5、30 a)和自由放牧处理,探讨草地不同利用方式对草地植物多样性和生物量的影响。结果表明,在自由放牧制度下,由于干扰过于剧烈,草地已呈退化趋势,物种多样性和生物量均较低;在围栏草地中,随着围封年限的增加,群落高度、盖度、地上生物量逐渐增加;地上生物量的变化趋势为放牧草地围栏3 a草地围栏5 a草地围栏30 a草地。  相似文献   

9.
This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements -habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land- whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index.Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50×20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators.The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.  相似文献   

10.
Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E?~?1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.  相似文献   

11.
Population growth, during the twentieth century, has increased demand for new farmlands. Accordingly, road networks have rapidly been developed to facilitate and accelerate human access to the essential resources resulted in extensive land use changes. The present study aims at assessing cumulative effects of developed road network on tree cover of Golestan Province in northern Iran. In order to detect changes over the study period of 1987–2002, the LULC map of the study area was initially prepared from the satellite images of Landsat TM (1987) and ETM+ (2002) using maximum likelihood supervised classification method. Afterwards, a total number of seven landscape matrices were selected to detect cumulative effects of the developed road network on woodland cover. The obtained results indicated that the fragile patches are mainly located at a distance of 171–342 m from the roadside. Furthermore, the majority of the patches affected by cumulative effects of development activities are situated at a distance of 342–684 m from the roadside, over an approximate area of 55 ha. The analysis of landscape metrics revealed that the developed road network has increased the landscape metrics of “the number of patches” and “patches perimeter-area ratio”. It has also followed by a decrease in metrics such as “patches area”, “Euclidean nearest neighbor distance”, “patches proximity”, “shape index”, “contiguity”, and “mean patches fractal dimension”. The road network has also increased the “number of patches” and decreased the “mean patches area” representing further fragmentation of the landscape. With identification of highly affected wooldland cover patches, it would be possible to apply adaptive environmental management strategies to preserve and rehabilitate high-priority patches.  相似文献   

12.
Road traffic emits a cocktail of pollutants that can influence the vegetation and plant diversity in neighboring areas. However, the recovery potential of bryophytes after traffic abandonment is still little explored. In addition, the effects of the main pollutants of road verges, such as metals and salinity, on moss flora need to be investigated. In our study, we compared the moss richness and diversity in two closely related veteran tree allees of high conservation importance. The allees in Gry?ów and Lubrza, Poland, were chosen because of their similarity in age, geographical location, type of surrounding areas, and tree species. The only difference was that the trees in Gry?ów had not been exposed to direct road pollution for almost 30 years. The moss richness and diversity differed significantly between the sites. Altogether, 20 moss species were recorded on 229 trees, 17 species in Gry?ów (abandoned road), and 13 in Lubrza (busy road). We found considerable differences between moss cover on the road-facing and opposite sides of tree trunks. In Lubrza, mosses on the road-facing side were very scarce. The moss cover in Gry?ów was highly balanced between trunk sides as well as among trunk heights. Typical epiphytic species such as Bryum moravicum, Dicranoweisia cirrata, Leskea polycarpa, and Orthodicranum tauricum preferred the Gry?ów tree stands, where they were present in numbers almost twice as high as that at Lubrza. The study shows that constructing a bypass road could be an effective conservation measure for veteran tree protection with their epiphytic moss flora.  相似文献   

13.
Little is known about the importance of landscape and land cover to the implementation and performance of agricultural conservation projects designed to improve stream quality. In our study, we addressed the potential importance of landscape and land cover to conservation projects by measuring variation across 191 μ-basins (100–2400 ha) and integrating the observed variation into a study design aimed at determining the effectiveness of conservation projects. Our findings indicate that there are strong gradients across which landscape and land cover attributes vary. Land cover varied along a gradient of agricultural intensity, basin morphometry across gradients of stream closure and basin size, basin substrate was described by variation in drumlin formation, glacial landform type, and soil drainage, while agricultural conservation projects varied according to the level of project implementation. Correlation of these gradients found several associations between landscape and land cover, indicating that agricultural intensity was being constrained predominantly by drumlin formation and glacial landform type. Landscape and land cover did not appear to be determining factors in the implementation of conservation projects by land owners. Based on these findings we chose 32 μ-basins which represented the variability along each of the defined gradients for further study. We conclude that landscape scale variables demonstrate important variation and covariation that can and should be integrated into study designs for the assessment of streams and human activities affecting streams.  相似文献   

14.
This study describes the conservation status of dune systems in relation to disturbance factors in the coastal stretch of the Viterbo province, Latium Region, Italy. Particular emphasis was given to the bioindication value of plant communities and their sequence. Each plant community was considered as a "habitat" in accordance with Annex I of the Directive 92/43/EU. Stress factors, such as sand dynamic and erosion, and anthropogenic pressures, such as trampling and bathing settlements, influence the sequence of habitats and weaken the system of relations that makes these coenoses to occur in extreme conditions. The choice to carry out surveys along wide transects, recording different data, allowed to explore the use of habitats as bioindicators. Comparing sites characterized by the same extension in a homogeneous area, it was possible to expand the use of canonical correspondence analysis (CCA) as a tool to correlate habitat composition and disturbance factors. The application of CCA showed a high correlation of degradation and habitat loss with coastal erosion, trampling and presence of waste. Furthermore, floristic surveys allowed the application of different biodiversity indices to quantify species richness of sampled areas. The conservation status of the sites investigated was found to be diverse, from the total disappearance of the mobile dune habitats to their complete sequence. The proposed methodology has been useful to fulfill the objective of the work and is applicable to other case studies in the Mediterranean.  相似文献   

15.
The study evaluates the potential for bird species assemblages to serve as indicators of biological integrity of rangelands in the Great Basin in much the same way that fish and invertebrate assemblages have been used as indicators in aquatic environments. Our approach was to identify metrics of the bird community using relatively simple sampling methods that reflect the degree of rangeland degradation and are consistent over a variety of vegetation types and geographic areas. We conducted the study in three range types (i.e., potential natural plant community types) in each of two widely separated areas of the Great Basin: south-eastern Idaho (sagebrush steppe range types) and west-central Utah (salt-desert shrub range types). Sites were selected in each range type to represent three levels of grazing impact, and in Idaho included sites modified for crested wheatgrass production. Birds were sampled by point counts on 9 100-m radius plots at 250-m spacing on each of 20 sites in each area during the breeding season. In sagebrush-steppe, 964 individuals in 8 species of passerine birds were used in analyses. Five metrics were significantly related to impact class, both when analyzed within range type and when analyzed with all range types combined. Species richness, relative abundance of shrub obligate species, and relative abundance of Brewer's sparrow were generally lower for the higher impact classes, whereas the reverse was true for dominance by a single species and for relative abundance of horned larks. In contrast, total number of individuals did not differ significantly as a function of impact class. In salt-desert shrub, a total of 843 birds in 4 species were included in analyses, 98% of which were horned larks. None of the metrics identified above was significantly related to impact class. Two metrics for breeding birds in sagebrush steppe (species richness and dominance) showed little overlap between values for the extremes of impact class, and thus they have potential as indicators of biological integrity. However, the sensitivity of these metrics appears to be greatest at the high impact end of the spectrum, which suggests they may have limited utility in distinguishing between sites having light and moderate impact.  相似文献   

16.
We evaluate a field method for determining species richness andcanopy cover of vascular plants for the Forest Health MonitoringProgram (FHM), an ecological survey of U.S. forests. Measurementsare taken within 12 1-m2 quadrats on 1/15 ha plots in FHM.Species richness and cover are determined for four height classes(strata) within each quadrat and aggregated by stratum over the entireplot. We estimated (1) the agreement between experienced trainers andinexperienced technicians who collected the data on this survey(accuracy) and (2) the agreement among the technicians (precision) forresults on species richness and cover from 3 test plots at 3 timeintervals. The methods appear to be highly precise, although somediscrepancies with the values obtained by the trainers were found.Trainers found significantly more species in the ground stratum (0–0.6 m) and measured significantly more cover in the uppermost stratum(>4.9 m). The proportion of variation due to measurement error andtemporal variability was less than 13% for species richness (all strata)and cover (all but one stratum). This indicates that the method issuitable for monitoring changes in species richness and canopy coverfor a large-scale synoptic monitoring project such as FHM.  相似文献   

17.
We present a technique to quantify and model the intensity of structural changes produced by management of dry grazing lands at a landscape scale. The technique is illustrated with the analysis of digitized black–white (b/w) imagery and an application to the study of changes induced by grazing gradients. Structural changes in patchy vegetation canopies were studied in the Patagonian Monte (Chubut, Argentina) at two resolution scales by means of linear transects in the field (50 m) and others drawn on aerial b/w photographs (2–5 km) of grazed paddocks. Spatial series of plant cover values along transects in the field and on photographs were analyzed with standard techniques of spectral analyses, including auto-correlation spectra and Fourier transforms. In order to test the internal consistency of the techniques used, synthetic plant canopies with patches of varying cover and size were generated by means of a stochastic model of plant growth under different stocking rates or after varying periods of recovery. The behavior of the simulation model is consistent with the observed dynamics of plant canopies in semiarid environments. There is a consistent relation between the number and geometric properties of plant patches (patch number, patch size, patch connectivity) and the signal/noise ratios of the Fourier decomposition describing plant density data. Signal/noise ratios corresponding to plant cover data in paddocks with different grazing treatment are consistent with the assumptions derived from modeled canopies, as well as those estimated from optical density of b/w aerial photographs of paddocks. We tested the hypotheses that patch arrangements as quantified by the signal/noise ratios vary in accordance with grazing gradients in paddocks with a permanent corner-located watering point. The use of digitized b/w images allows inspecting permanent changes over time periods when other types of images were not yet available.  相似文献   

18.
One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 ± 2.7% (mean ± 1 SE) in the secondary disturbance subplots to 17.7 ± 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 ± 8.4% in the discharge areas to 14.7 ± 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity.  相似文献   

19.
The most important function of watersheds in the western U.S. is the capacity to retain soil and water, thereby providing stability in hydrologic head and minimizing stream sediment loads. Long-term soil and water retention varies directly with vegetation cover. Data on ground cover and plant species composition were collected from 129 sites in the Rio Grande drainage of south-central New Mexico. This area was previously assessed by classification of Advanced Very High Resolution Radiometry (AVHRR) imagery. The classification of irreversibly degraded sites failed to identify most of the severely degraded sites based on size of bare patches and 35% of the sites classified as degraded were healthy based on mean bare patch size and vegetation cover. Previous research showed that an index of unvegetated soil (bare patch size and percent of ground without vegetative cover) was the most robust indicator of the soil and water retention function. Although the regression of mean bare patch size on percent bare ground was significant (p < 0.001), percent bare ground accounted for only 11% of the variability in bare patch size. Therefore bare patch size cannot be estimated from data on percent bare ground derived from remote sensing. At sites with less than 25% grass cover, and on sites with more than 15% shrub cover, there were significant relationships between percent bare soil and mean bare patch size (p < 0.05). Several other indicators of ecosystem health were related to mean bare patch size: perennial plant species richness (r = 0.6, p < 0.0001), percent cover of increaser species (r = 0.5, p < 0.0001) and percent cover of forage useable by livestock (r = 0.62, p < 0.0001). There was no relationship between bare patch size and cover of species that are toxic to livestock. In order to assess the ability of western rangeland watersheds to retain soil and water using remote sensing, it will be necessary to detect and estimate sizes of bare patches ranging between at least 0.5 m in diameter to several meters in diameter.  相似文献   

20.
To further understand the mechanism of bioavailable total P (BAP) and bioavailable dissolved P (BDP) transport by overland and subsurface flow, we exposed a runoff plot 4.5 m long × 1.5 m wide × 0.6 m deep to simulated and natural rainfall in order to study the effects of rainfall type, rainfall intensity, and vegetation cover on BAP and BDP transport. The results showed that vegetation cover could alleviate the discharge of overland flow and sediment transport and enhance subsurface flow. BAP transport significantly increased with elevated rainfall intensity. Vegetation cover reduced the BAP transport by overland flow and increased it by subsurface flow. BDP transport showed no significant relationship with vegetation cover and rainfall type. The bioavailable particulate P (BPP) transport by overland flow contributed to no less than 90% by weight of total BAP, and the BPP transport by subsurface flow contributed to no less than 60% by weight of total BAP. Short-time heavy rainfall caused more BAP transport and accelerated non-point source pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号