首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. >9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and delta13C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched delta13C values compared to the upgradient mean. In addition, delta13C values for the degradation products of TCE, cis-dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.  相似文献   

2.
Methyl tert -butyl ether (MTBE) plume is controlled by many factors, primarily by groundwater flow velocity, dispersion, natural attenuation. This study employed an analytical model introduced by Domemico (1987, J. Hydrol 91 , 49-58.) to describe the MTBE concentration distribution horizontal pattern and estimated the MTBE plume length. The model was applied to 90 leaking underground storage tank cases in Los Angeles, CA, U.S.A. The analytical model was calibrated with field data for each ease using a Microsoft Excel spreadsheet program. Methyl tert -butyl ether concentrations in one source monitoring well and one to two downgradient centerline monitoring wells were used for each case study. When the centerline well is not available, the closest off-centerline wells were projected to the centerline using an ellipse trigonometry method. The model parameter values for longitudinal dispersivity, groundwater velocity, and degradation rate constant were calibrated using the field data and then used to estimate the maximum distance between source well and the plume edge. This study demonstrates that the Domenico model can be applied to MTBE plume investigation when adequate field data are available. The correlation coefficients calculated based on the results of the 90 case studies indicate that MTBE plume length has a poor correlation with MTBE concentration at the source well, and a moderate negative correlation with the degradation rate constant ( m 0.65) and u / v ratio (0.64). Furthermore, MTBE plume length has a poor correlation with the longitudinal dispersivity ( m 0.4), hydraulic gradient ( m 0.1), and groundwater velocity (0.17).  相似文献   

3.
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.  相似文献   

4.
A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 microg/L to below detection (<4 microg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 microg/L in every downgradient well compared to an average upgradient concentration of 13,100 microg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 microM to 0.2-4 microM during passage through the bio-barrier. However, 1-9 microM 1,1-dichloroethane (DCA) and 8-14 microM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2-cis-dichloroethene (cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average=68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio-barrier. Contaminant transport and degradation within the bio-barrier was simulated using an advection-dispersion-reaction model where biodegradation rate was assumed to be linearly proportional to the residual oil concentration (Soil) and the contaminant concentration. Using this approach, the calibrated model was able to closely match the observed contaminant distribution. The calibrated model was then used to design a full-scale barrier to treat both ClO4 and chlorinated solvents.  相似文献   

5.
A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.  相似文献   

6.
A 16-year study of a hydrocarbon plume shows that the extent of contaminant migration and compound-specific behavior have changed as redox reactions, most notably iron reduction, have progressed over time. Concentration changes at a small scale, determined from analysis of pore-water samples drained from aquifer cores, are compared with concentration changes at the plume scale, determined from analysis of water samples from an observation well network. The small-scale data show clearly that the hydrocarbon plume is growing slowly as sediment iron oxides are depleted. Contaminants, such as ortho-xylene that appeared not to be moving downgradient from the oil on the basis of observation well data, are migrating in thin layers as the aquifer evolves to methanogenic conditions. However, the plume-scale observation well data show that the downgradient extent of the Fe2+ and BTEX plume did not change between 1992 and 1995. Instead, depletion of the unstable Fe (III) oxides near the subsurface crude-oil source has caused the maximum dissolved iron concentration zone within the plume to spread at a rate of approximately 3 m/year. The zone of maximum concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) has also spread within the anoxic plume. In monitoring the remediation of hydrocarbon-contaminated ground water by natural attenuation, subtle concentration changes in observation well data from the anoxic zone may be diagnostic of depletion of the intrinsic electron-accepting capacity of the aquifer. Recognition of these subtle patterns may allow early prediction of growth of the hydrocarbon plume.  相似文献   

7.
Field-scale characterisations of contaminant plumes in groundwater, as well as source zone delineations, are associated with uncertainties that can be considerable. A major source of uncertainty in environmental datasets is due to variability of sampling results, as a direct consequence of the heterogeneity of environmental matrices. We develop a methodology for quantifying uncertainties in field-scale mass flow and average concentration estimations, using integral pumping tests (IPTs), where the contaminant concentration is measured as a function of time in a pumping well. This procedure increases the sampling volume and reduces the effect of small-scale variability that may bias point-scale measurements. In particular, using IPTs, the interpolation uncertainty of conventional point-scale measurements is transformed to a quantifiable uncertainty related to the (unknown) plume position relative to the pumping well. We show that this plume position uncertainty generally influenced the predicted mass flows and average concentrations (of acenapthene, benzene and CHCs) to a greater extent than a boundary condition uncertainty related to the local water balance, considering 19 control planes at a highly heterogeneous industrial site in southwest Germany. Furthermore, large (order of magnitude) uncertainties only occurred if the conditions were strongly heterogeneous in the nearest vicinity of the well. We also develop a consistent methodology for an assessment of the combined effect of uncertainty in hydraulic conditions and uncertainty in reactive transport parameters for delimiting of both contaminant source zones and zones absent of source, based on (downgradient) IPTs.  相似文献   

8.
In this work, we present a stochastic optimal control framework for assisting the management of the cleanup by pump-and-treat of polluted shallow aquifers. In the problem being investigated, hydraulic conductivity distribution and dissolved contaminant plume location are considered as the uncertain variables. The framework considers the subdivision of the cleanup horizon in a number of stress periods over which the pumping policy implemented until that stage is dynamically adjusted based upon new information that has become available in the previous stages. In particular, by following a geostatistical approach, we study the idea of monitoring the cumulative contaminant mass extracted from the installed recovery wells, and using these measurements to generate conditional realizations of the hydraulic conductivity field. These realizations are thus used to obtain a more accurate evaluation of the initial plume distribution, and modify accordingly the design of the pump-and-treat system for the remainder of the remedial process. The study indicates that measurements of contaminant mass extracted from pumping wells retain valuable information about the plume location and the spatial heterogeneity characterizing the hydraulic conductivity field. However, such an information may prove quite soft, particularly in the instances where recovery wells are installed in regions where contaminant concentration is low or zero. On the other hand, integrated solute mass measurements may effectively allow for reducing parameter uncertainty and identifying the plume distribution if more recovery wells are available, in particular in the early stages of the cleanup process.  相似文献   

9.
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。  相似文献   

10.
Remediation actions at contaminated sites are based on multiple numerical model scenarios considering different parameter distributions, source positions and contaminant transport paths. In some cases the excess of scenarios is due to uncertainties in the conceptual model as a result of the spread of contamination through heterogeneities in the physical system. Reduction of project hypotheses and conceptual model uncertainty is therefore needed. This result can be achieved by coupling hydrogeological investigations with environmental forensic techniques, better localization of the source and understanding of contamination history. In this respect, in the present study, compositional fingerprinting and groundwater flow modeling were applied to a former oil storage facility where, even though a hydraulic barrier had been built to stop the hydrocarbon plume, the presence of some hydrocarbons was still found in downgradient monitoring wells. The final aim was to evaluate the efficacy of the hydraulic barrier and identify of the source of pollution. Fingerprinting results indicated pollution with a gasoline-diesel mixture much altered by water washing and/or biodegradation. Comparison of seven groundwater samples collected in wells and monitoring wells was performed by analyzing the volatile fraction (BTEX) and the total ion chromatogram (TIC), focusing attention on: n-alkanes (m/z 85), alkylcyclohexanes (m/z 83), isoprenoids (m/z 113), C4-alkylbenzenes (m/z 134), C3-C6 alkylbenzenes and polycyclic aromatic hydrocarbons (PAHs). The most probable scenario was then identified by combining the results of fingerprinting with different contaminant paths obtained using the numerical model.  相似文献   

11.
Field biogeochemical characterization and laboratory microcosm studies were performed to assess the potential for future biotransformation of trichloroethylene (TCE) and toluene in a plume containing petroleum hydrocarbons and chlorinated solvents at the former Wurtsmith Air Force Base in Oscoda, MI. In situ terminal electron accepting processes (TEAPs), contaminant composition and microbial phylogeny were studied at a plume transect 100 m downgradient of the source. The presence of reduced electron acceptors, relevant microbial communities, and elevated dissolved methane and carbon dioxide concentrations at the transect, as well as downgradient accumulation of BTEX metabolites and dechlorination products, indicated that past or current reductive dechlorination at the transect was likely driven by BTEX biodegradation in the methanogenic zone. However, TCE and toluene mineralization in sediment-groundwater microcosms without added electron acceptors did not exceed 5% during 300 days of incubation and was nearly invariant with original sediment TEAP, even following amendments of nitrogen and phosphorus. Mineralization rates were on the order of 0.0015-0.03 mumol/g day. After 8 months, microcosms showed evidence of methanogenesis, but CH4 and CO2 production arose from the degradation of contaminants other than toluene. Cis-dichloroethylene was observed in only one methanogenic microcosm after more than 500 days. It appears likely that spatially and temporally dynamic redox zonation at the plume transect will prevent future sustained reductive dehalogenation of highly chlorinated solvents, for during the course of a year, the predominant TEAP at the highly contaminated water table shifted from methanogenesis to iron- and sulfate-reduction. It is recommended that biotransformation studies combine considerations of long-term, spatially relevant changes in redox zonation with laboratory-scale studies of electron donor utilization and cometabolic substrate transformation to yield a more accurate assessment of natural bioattenuation of specific pollutants in aquifers contaminated by undefined organic waste mixtures.  相似文献   

12.
Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.  相似文献   

13.
In this paper, the integral groundwater investigation method is used for the quantification of PCE and TCE mass flow rates at an industrialized urban area in Linz, Austria. In this approach, pumping wells positioned along control planes perpendicular to the groundwater flow direction are operated for a time period on the order of days and sampled for contaminants. The concentration time series of the contaminants measured during operation of the pumping wells are then used to determine contaminant mass flow rates, mean concentrations and the plume shapes and positions at the control planes. The three control planes used in Linz were positioned downstream of a number of potential source zones, which are distributed over the field site. By use of the integral investigation method, it was possible to identify active contaminant sources, quantify the individual source strength in terms of mass flow rates at the control planes and estimate the contaminant plume position relative to the control planes. The source zones emitting the highest PCE and TCE mass flow rates could be determined, representing the areas where additional investigation and remediation activities will be needed. Additionally, large parts of the area investigated could be excluded from further investigation and remediation activities.  相似文献   

14.
A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day(-1) for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant-highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be applicable.  相似文献   

15.
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may cause a concentration measurement to be not temporally representative. This paper presents results from a numerical modeling study focusing on temporal variations of the groundwater flow direction. “Measurements” are obtained from point information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source of uncertainty for point measurements. Temporal variation of point concentration measurements may be as high as the average concentration determined, especially near the plume fringe, even when assuming a homogeneous distribution of the hydraulic conductivity. If a heterogeneous hydraulic conductivity field is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially for large spacings of the observation wells. Passive dosimeter sampling is found to be appropriate for evaluating the stationarity of contaminant plumes as well as for estimating average concentrations over time when the plume has fully developed. Representative sampling has to be performed over several periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve mass flux estimates under dynamic flow conditions.  相似文献   

16.
The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.  相似文献   

17.
Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum-contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and methanogenic conditions. Using this transport model, we had limited success in simulating overlap of redox products using reasonable ranges of parameters within a strictly sequential electron acceptor utilization framework. Simulation results indicate that overlap of redox products cannot be accurately simulated using the constructed model, suggesting either that Fe(III) reduction and methanogenesis are occurring simultaneously in the source area, or that heterogeneities in Fe(III) concentration and/or mineral type cause the observed overlap. Additional field, experimental, and modeling studies will be needed to address these questions.  相似文献   

18.
This paper examines the importance of the correlation between hydraulic conductivity (K) and degradation rate constant (k) during the transport of reactive contaminants in heterogeneous aquifers. We simulated reactive transport in an ensemble of two-dimensional heterogeneous aquifers. Two sets of transport simulations were conducted: one in which a perfect positive correlation was assumed between ln(K) and ln(k), and one in which a perfect negative correlation was assumed. We found that the sign of the correlation has important consequences for the contaminant transport. Qualitatively, a negative correlation leads to significantly more pronounced "fingering" of the contaminant plume than does a positive correlation, with potentially important consequences for downgradient receptors. Quantitatively, the expected behavior (as quantified by the contaminant mass remaining in the aquifer) is statistically different between the positive and negative cases: on average, more contaminant mass persists when K and k are negatively correlated. Also, the negative correlation leads to more variability between realizations of the ensemble, whereas a positive correlation induces relatively little variability between realizations. We discuss the implications of these findings for the management of contaminated aquifers.  相似文献   

19.
Numerical simulation is used to examine the relative velocities of DNAPL and aqueous phase plumes in sandy aquifers where lateral spreading of DNAPL has occurred at the base of the aquifer. The scenario being modeled is one where a permeable aquifer is underlain by a sloping aquitard, which results in lateral migration of the DNAPL down the slope, in addition to lateral migration of an aqueous phase plume subject to a specified hydraulic gradient. A sensitivity analysis is presented to the impacts of both DNAPL properties and geologic properties. The most important chemical properties governing the relative velocities of the DNAPL and the shallow aqueous phase plume are the DNAPL viscosity and the aqueous component soil-water partition coefficient (Kd). The dip of the underlying aquitard was found to be relatively unimportant, at least for the range of values studied. The scenario under consideration can be important in conceptual model development and remedial design, as in certain cases DNAPL could be migrating in areas without the evidence of a well-developed aqueous phase plume. The implication of this work is that the absence of a shallow aqueous phase plume directly downgradient of a DNAPL source zone does not rule out the possibility of deep occurrences of DNAPL beyond the shallow monitoring well network. A further finding of this study is that the occurrence of a highly sorbing compound in groundwater at virtually any concentration may indicate the immediate upgradient presence of residual or pooled DNAPL.  相似文献   

20.
At the Centre for Environmental Research Leipzig-Halle (UFZ) research site in Zeitz, Germany, benzene contaminates the lower of two aquifers with concentrations of up to 20 mg/l. Since the benzene plume has a minimum length of approximately 1 km, enhanced natural attenuation measures are being considered as a remediation strategy. This study describes the performance and evaluation of a multi-species reactive tracer test using the tracers fluorescein and bromide as conservative tracers and toluene as reactive tracer. Sampling was performed over a period of six months using a detailed network of multilevel sampling wells. Toluene was only slightly retarded in comparison to bromide, whereas fluorescein was retarded considerably stronger. Therefore, it was not possible to use fluorescein as an in situ tracer for the determination of groundwater velocities. The ionic nature of fluorescein is assumed to be the major reason for its retardation. The results show that the infiltration conditions were suitable to produce a wide spreading of the tracer front along the full thickness of the aquifer. Thus, a large aquifer volume can be treated in future enhanced bioremediation measures. The total quantity of infiltrated toluene (24 l) was degraded under sulfate-reducing conditions over a flow path of 50 m. Benzylsuccinate was identified as a metabolite of toluene degradation under sulfate-reducing conditions at this site. The modelling results show that toluene degradation was described more accurately using Monod kinetics than first-order kinetics. Since toluene was only slightly retarded in comparison to bromide, sorption and desorption processes were considered to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号