首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined PAH uptake by Norway spruce needles following the emergence of new buds in spring 2004–June 2005. Atmospheric PAH concentrations (gaseous phase and particle-bound) were monitored during this period, and PAH concentrations from these three environmental media were then used to calculate deposition and transfer velocities. Benzo(a)pyrene was found almost exclusively associated to particles and thus was used to determine a particle-bound deposition velocity of 10.8 m h?1. PAHs present in both compartments had net gaseous transfer velocities ranging from negligible values to 75.6 m h?1 and correlated significantly with log KOA. The loss velocities thereafter calculated were found to be higher for more volatile PAHs. Using the calculated average atmospheric PAH concentrations and deposition velocities, it was thus possible to model PAH uptake by vegetation through time. We demonstrate that this approach can be used to determine deposition velocities without the use of a surrogate surface. In considering both particulate-bound and gaseous deposition processes this model can be used not only to study air–foliage exchange of semi-volatile organic compounds, but also to illustrate the relative contribution of gaseous deposition and particulate-bound deposition in the overall atmospheric vegetation uptake of semi-volatile organic compounds.  相似文献   

2.
Urban lakes are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs from wet and dry atmospheric deposition. Little was reported on the seasonal patterns of atmospheric deposition of PAHs under Asian monsoon climate. Bulk (dry + wet) particle deposition, air-water diffusion exchange, and vapour wet deposition of PAHs in a small urban lake in Guangzhou were estimated based on a year-round monitoring. The total PAH particle deposition fluxes observed were 0.44-3.46 μg m−2 day−1. The mean air-water diffusive exchange flux was 20.7 μg m−2 day−1. The vapour deposition fluxes of PAHs ranged 0.15-8.26 μg m−2 day−1. Remarkable seasonal variations of particulate PAH deposition, air-water exchange fluxes and vapour wet deposition were influenced by seasonal changes in meteorological parameters. The deposition fluxes were predominantly controlled by the precipitation intensity in wet season whereas by atmospheric concentration in dry season.  相似文献   

3.
Ambient air samples from a traffic intersection, an urban site and a petrochemical-industrial site (PCI) were collected by using several dry deposition plates, two Microorifice uniform deposited impactors (MOUDIs), one Noll Rotary Impactor (NRI) and several PS-1 (General Metal Work) samplers from March 1994 to June 1995 in southern Taiwan, to characterize the atmospheric particle-bound PAH content of these three areas. Twenty-one individual polycyclic aromatic hydrocarbons (PAHs) were analyzed primarily by using a gas chromatograph/mass spectrometer (GC/MS). In general, the sub-micron particles have a higher PAH content. This is due to the fact that soot from combustion sources consists primarily of fine particles and has a high PAH content. In addition, a smaller particle has a higher specific surface area and therefore may contain more organic carbon, which allows for more PAH adsorption. For a particle size range between 0.31 and 3.2 microm, both Urban/Traffic and PCI/Traffic ratios of particle-bound total-PAH content have the lowest values, ranging from 0.25 to 0.28 (mean = 0.26) and from 0.07 to 0.13 (mean = 0.10), respectively. This indicates that, during the accumulation process, the PAH mass shifted from a particle phase to a gas phase, or the particles aggregated with lower PAH-content particles, resulting in a reduction in particle-bound PAH content. By using the particle size distribution data, the dry deposition model in this study can provide a good prediction for the PAH content of dry deposition materials. In general, lower molecular weight PAHs had a larger fraction of dry deposition flux contributed by the gas phase; for 2-ring PAH (50.4, 46.3 and 28.4%), 3-ring PAHs (15.2, 15.4 and 11.7%) and 4-ring PAHs (13.0, 3.60 and 5.01%) for the traffic intersection, urban and PCI sites, respectively. For higher molecular weight PAHs-5-ring, 6-ring and 7-ring PAHs-their cumulation fraction (F%) of dry deposition flux contributed by the gas phase was lower than 3.26%. At the traffic intersection, urban and PCI sites, the mass median diameter of dry deposition materials (MMD(F)) of individual PAHs was between 25.3 and 49.6 microm, between 27.6 and 43.9 microm, and between 19.1 and 41.9 microm, respectively. This is due to the fact that PAH dry-deposition primarily resulted from gravitational settling of the coarse particulates (> 10 microm).  相似文献   

4.
Martins M  Ferreira AM  Vale C 《Chemosphere》2008,71(8):1599-1606
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.  相似文献   

5.
Measurements of organic compounds in air and deposition have been carried out in parallel on the Swedish west coast. In this investigation the importance of long-range transport for the occurrence of organic compounds in deposition has been studied. Air samples were collected using a high volume sampler (HVS) and the deposition was sampled on a 1 m2 Teflon-coated horizontal surface with runoff for the precipitation to an adsorbent. The samples were analyzed in order to identify and quantify different semivolatile compounds such as PAH and petrogenic hydrocarbons and chlorinated compounds such as PCB, HCH and HCB. Qualitative differences between the content of organic compounds in air and deposition during periods with varying levels of air pollution and different meteorological conditions have been studied and a comparison with other air pollutants, such as soot, has been carried out. The results of the measurements show that deposition of PAH and other hydrocarbons takes place continuously but the greatest amounts are measured in the deposition in connection with episodes together with heavy precipitation. The highest concentrations of PCB and HCH in the air were obtained during a warm dry period in May and the greatest amounts were deposited in a period in May with heavy precipitation.  相似文献   

6.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

7.
Olivella MA 《Chemosphere》2006,63(1):116-131
Fourteen polycyclic aromatic hydrocarbons (PAHs) were measured in surface waters and precipitation inputs to Lake Maggiore, a subalpine lake in Northern Italy, from July 2003 to January 2004. Particulate and dissolved phases in surface water and rain samples were determined. Analyses of PAHs were performed using XAD-2 resin to isolate the dissolved PAHs and subsequent extraction by accelerated solvent extraction (ASE). Both the dissolved and particulate phase PAH patterns in surface water and rainwater samples were dominated by the low molecular weight compounds (e.g., phenanthrene, fluoranthene and pyrene). More than 85% of PAHs in surface waters and 72% of PAHs in rainwater were associated to the dissolved phase. The SigmaPAH concentrations in surface waters (particulate and dissolved phases) were 0.584 +/- 0.033 ng l(-1), 2.9 +/- 0.312 ng l(-1) and in rainwater (particulate and dissolved phases) 27.5 +/- 2 ng l(-1), 75.4 +/- 9 ng l(-1), respectively. Temporal variability of PAH concentrations in rain and surface water samples were observed, with higher concentrations in November and December, coinciding with the largest precipitation amounts. The comparison of PAH signatures in rainwater and surface waters seems to indicate that wet deposition (2.5-41 microg m(-2) month(-1)) is the main source of PAH contamination into surface waters of Lake Maggiore.  相似文献   

8.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

9.
Bulk (wet and dry) precipitation and surface water sampling was undertaken in the main plain of central Macedonia in Northern Greece. Fourteen polycyclic aromatic hydrocarbons (PAHs) included in the US EPA's priority pollutant list were analysed. The concentrations determined in bulk precipitation were in general within the range of values worldwide reported. Concentrations were highest in the cold months. Deposition fluxes of PAHs were of the same order of magnitude as reported data. The greatest values were found when high concentrations of PAHs in precipitation coincided with large precipitation amounts. The concentrations of PAHs in surface waters (main rivers, tributaries, ditches, etc) were in general lower than those in bulk precipitation, and among the lowest reported for European rivers, excepting Np and Ph. Bulk deposition and domestic effluents are suggested as being the main PAH sources into surface waters.  相似文献   

10.
The contribution of dry deposition to the total atmospheric input of acidifying compounds and base cations is of overwhelming importance. Throughfall measurements provide an estimate of the total deposition to forest soils, including dry deposition, but some uncertainties, related to the canopy interaction processes, affect this approach. We compared the concentrations and the fluxes of the main ions determined in wet-only, bulk and throughfall samples collected at five forest sites in Italy. The contribution of coarse particles deposited onto the bulk samplers was of prime importance for base cations, representing on average from 16% to 46% of the bulk deposition. The extent of this dry deposition depended on some geographical features of the sites, such as the distance from the sea and the annual rainfall. The possibility of applying specific bulk/wet ratios to estimate the wet deposition proved to be limited by the temporal variability of these ratios, which must be considered together with the spatial variability. A direct comparison of the dry contribution deriving from the bulk–wet and the throughfall–wet demonstrated that an extensive natural surface (forest canopy) performs better than a small synthetic surface (funnel of the bulk sampler) in collecting dry deposition of SO42−, NO3 and Na+. The canopy exchange model was applied to both bulk and wet data to estimate the contribution of dry deposition to the total input of base cations, and the uncertainty associated to the model discussed. The exclusive use of bulk data led to a considerable underestimation of base cation dry deposition, which varies among the study sites.  相似文献   

11.
The purpose of this study was to test the efficiency of passive solid samplers, polyoxymethylene (POM) strips and polydimethylsiloxane (PDMS) silicon tubing, to predict the bioavailability of native PAHs in contaminated sediments. Results were compared with worm bioaccumulation data and solid/liquid extraction using the surfactant Brij((R)) 700 (B700). The two passive samplers were found to act differently. The PDMS sampler overestimated the availability of PAHs in all studied sediments. The POM method provided results in accordance with those obtained with the B700 extraction. However, POM and B700 methods underestimated PAH availability in low contaminated sediments where biological factors (digestible organic matter) become important. Bioavailability of total PAHs was correctly predicted by POM and B700 in highly contaminated aluminum smelter sediments. A closer examination of individual PAH results indicated that both techniques overestimated the availability of large molecules with logK(ow)>6 suggesting a biological mechanism limiting uptake of larger PAHs which seems to be related to the molecular size of compounds.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAH) were analysed in 23 soil samples (0–10 cm layer) from the Swiss soil monitoring network (NABO) together with total organic carbon (TOC) and black carbon (BC) concentration, as well as some PAH source diagnostic ratios and molecular markers. The concentrations of the sum of 16 EPA priority PAHs ranged from 50 to 619 μg/kg dw. Concentrations increased from arable, permanent and pasture grassland, forest, to urban soils and were 21–89% lower than median numbers reported in the literature for similar Swiss and European soils. NABO soils contained BC in concentrations from 0.4 to 1.8 mg/g dw, except for two sites with markedly higher levels. These numbers corresponded to 1–6% of TOC and were comparable to the limited published BC data in soil and sediments obtained with comparable analytical methods. The various PAH ratios and molecular markers pointed to a domination of pyrogenically formed PAHs in Swiss soils. In concert, the gathered data suggest the following major findings: (1) gas phase PAHs (naphthalene to fluorene) were long-range transported, cold-condensated at higher altitudes, and approaching equilibrium with soil organic matter (OM); (2) (partially) particle-bound PAHs (phenanthrene to benzo[ghi]perylene) were mostly deposited regionally in urban areas, and not equilibrated with soil OM; (3) Diesel combustion appeared to be a major emission source of PAH and BC in urban areas; and (4) wood combustion might have contributed significantly to PAH burdens in some soils of remote/alpine (forest) sites.  相似文献   

13.
Results for the concentrations of total polycyclic aromatic hydrocarbons (Sigma PAH) and the PAH profile in leaves from three deciduous tree species from the same woodland are presented, and discussed with reference to environmental and leaf-related variables. There were significant differences between oak, ash and hazel leaves in their Sigma PAH concentrations (sum of 23 PAHs), and in the relative contribution of individual PAHs to the sum. Leaves exhibiting pubescence (hairiness) were found to have significantly higher Sigma PAH concentrations than hairless leaves, regardless of their position in the vegetation strata of the wood. Hazel leaves from the understorey had a PAH profile consisting of a greater proportion of the 4-, 5- and 6-ring PAHs than oak or ash from the canopy. This was concluded to be the result of the filtering effect of the main canopy on the air passing over and through it, with subsequent transfer of particles and attendant PAHs to the understorey below. The proportion of Sigma PAH contributed by the 6-ring PAH in hazel leaves was negatively correlated with distance from the southern edge of the canopy. It is proposed that the predominantly windward edges of the woodland, where atmospheric turbulence is likely to be greatest, favoured the deposition of particle-bound PAHs to leaves.  相似文献   

14.
A wet–dry deposition sampler was located at The Scientific and Technological Research Council of Turkey-National Metrology Institute (TUBITAK-UME) station, and a bulk deposition sampler was placed at the Kad?ll? village to determine the atmospheric deposition flux of polycyclic aromatic hydrocarbons (PAHs) and pesticides (organochlorine and organophosphorus) in soluble fraction of samples in Kocaeli, Turkey. The 28 samples for each wet, dry, and total deposition were collected weekly from March 2006 to March 2007. Gas chromatography-tandem mass spectrometry was used to analyze the samples which were prepared by using solid-phase extraction (SPE) method. The sum of volume weighted mean of deposition fluxes was obtained as 7.43 μg m?2 day?1 for wet deposition, 0.28 μg m?2 day?1 for dry deposition and 0.54 μg m?2 day?1 for bulk deposition samples for PAHs and 9.88 μg m?2 day?1 for wet deposition, 4.49 μg m?2 day?1 for dry deposition, and 3.29 μg m?2 day?1 for bulk deposition samples for pesticides. While benzo(a)anthracene had the highest fluxes among PAH compounds for all types of depositions, guthion and phosphamidon had the highest deposition flux compared with the other pesticides. Benzo(ghi)perylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, benzo(a)pyrene, and acenaphthene were not detected in any of the samples. Beta-HCH, gamma-HCH, and endrin aldehyde were the only compounds among 18 organochlorine pesticides to be detected in all deposition samples. The main sources of pesticides were the high number of greenhouses around the sampling stations. However, all of the organophosphorus pesticides were detected in all deposition samples. The pollution sources were identified as coal and natural gas combustion, petrogenic sources, and traffic for TUBITAK-UME station whereas coal and natural gas combustion and traffic were the main sources for Kad?ll? station by considering the results of factor analysis, ratios, and wind sector analysis.  相似文献   

15.
The polycyclic aromatic hydrocarbon (PAH) content was determined in the inner tissue of various vegetable species and their growing environment (soil and atmosphere) in the greater industrial area of Thessaloniki, northern Greece. The lower molecular weight compounds dominated in both vegetable leaves and roots. Statistical analysis of variance showed that species and season are the factors that significantly affect PAH concentrations in inner vegetable tissue and soil, respectively. Principal component analysis indicated that the mixture of PAHs in inner vegetable tissue was very similar to that in air vapour thus suggesting gaseous deposition as the principal pathway for the accumulation of PAHs. Soil-to-vegetation and air-to-vegetation bioconcentration factors were calculated and their relationships with PAHs' physicochemical properties were investigated. Solubility and the octanol-water partition coefficient, as well as vapour pressure and the octanol-air partition coefficient were proved to be good predictors for the accumulation of PAHs in inner root and leaf tissue, respectively.  相似文献   

16.
Fernandes MB  Brooks P 《Chemosphere》2003,53(5):447-458
Aromatic and aliphatic fractions of black carbon (BC) solvent extracts were examined by gas chromatography/mass spectrometry to determine how differences in broad chemical and physical features are correlated with the load, composition, "extractability" and bioavailability of organic compounds. Diesel soot, urban dust and chimney soot had concentrations of n-alkanes >20 microg/g and of carcinogenic polycyclic aromatic hydrocarbons (PAHs)>8 microg/g. These high levels of solvent-extractable compounds were interpreted as resulting from combustion at temperatures below optimum values for BC formation. PAH concentrations normalized to the amount of soot carbon in chimney soot were close to values for diesel soot. However, the high proportion of polar amorphous organic matter in chimney soot suggests a higher bioavailability for associated PAHs. Carbon black, vegetation fire residues, and straw and wood charcoals had only residual concentrations of n-alkanes (<9 microg/g) and PAHs (<0.2 microg/g). PAH distributions were mostly unspecific, while the overall signature of the aliphatic fraction varied with BC origin. Molecular markers among plant-derived BC included steroid and sesquiterpenoid hydrocarbons. Molecular fingerprints suggest that compounds associated with fossil BC might be more refractory than those associated with plant-derived BC.  相似文献   

17.
PM2.5 and size-segregated aerosols were collected in May 2002 as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA. Aerosol organic composition was used to estimate sources of a series of alkanes and polycyclic aromatic hydrocarbons (PAHs) using chemical indices, hierarchical cluster analysis (HCA) and a chemical mass balance receptor model (CMB). Aerosols were collected on quartz fiber filters (QFF) using a PM2.5 high volume sampler and on aluminum foil discs using a Micro-Orifice Uniform Deposit Impactor (MOUDI, 50% aerodynamic cut diameters were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.315 and 0.171 μm). Target compounds included alkanes and PAHs and were solvent extracted using a mixture of dichloromethane, acetone and hexane, concentrated and then analyzed using a gas chromatograph/mass spectrometer (GC/MS). The target compounds in PM2.5 were dominated by six sources during the study period: mobile sources (39±5%), coal burning (33±5%), biogenic primary emission (20±2%), oil combustion (5±2%), biomass burning (1.0±0.3%) and an unidentified source (3±2%). Results obtained from the chemical indices, HCA and CMB were in very good agreement with each other. PAH size distributions are presented for days dominated by a same source. Seventy-five percent and 50% of the PAH were found below 1.8 and 0.56 μm, respectively (monthly PAH geometric diameters averaged 0.43 μm). Coarse size PAHs were observed on 1 day (15 May) and were correlated with nitrate and sodium size distribution. It is hypothesized that the PAHs, sodium and nitrate were internally mixed and that the PAHs deposited onto a pre-existing marine aerosol. This transfer process has significant implications for PAH deposition and lifetime and warrants further study.  相似文献   

18.
PAH deposition to snow surface   总被引:2,自引:0,他引:2  
The urban snowpack effectively acts as a collection device for atmospheric-deposited PAHs. When these PAHs are flushed out in a short time interval along with springtime snowmelt, these cause shockloading to receiving waters. In order to assess the PAH deposition and accumulation in urban snowpacks, a deposition survey of PAH for the winter months of 1991-92 from the city of Sault Ste. Marie, Ontario, Canada was undertaken. The results of the survey are interpreted in view of prevailing meteorology and various emission sources in the study area. The relative PAH deposition levels (to BaP) are compared with relative source emission fingerprints to examine consistency in sampling and analysis. While analyzing the PAH samples using the ASTM (1987) method, the problem of concentration levels being below the detection level was encountered. The ASTM method for PAH analysis was modified to enhance the detection limit of the PAHs by concentrating the PAH extract to very low volumes, on the order of 200-300 microL.  相似文献   

19.
Lang Q  Zhang Q  Jaffé R 《Chemosphere》2002,47(4):427-441
Atmospheric particulate matter and both wet and dry deposition was collected over a period of nine months at one location in the metropolitan area of Miami, Florida. Molecular distributions and concentrations of n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAHs) and hopanes were determined using weekly composite samples over this time period in order to determine temporal variability, and their possible dependence on climatic parameters such as temperature, rainfall and wind direction and frequency. Based on molecular distributions of the compounds studied, potential emission sources for the atmospheric particles were assessed and suggested to be mainly derived from automobile exhaust and natural sources. Although wet and dry deposition processes were observed to remove about equal amounts of organic aerosols from the Miami atmosphere, dry deposition was dominant in the removal of anthropogenically derived compounds such as PAHs and hopanes. Only very limited seasonal trends were observed, while wind direction and frequency was found to be the most important meteorological parameter controlling the temporal variability of the organic aerosols. This is the first detailed report of this nature for the Miami area.  相似文献   

20.
Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAHLMW4) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAHLMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号