首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
间歇曝气SBR处理养猪沼液的短程脱氮性能   总被引:1,自引:4,他引:1  
采用间歇曝气序批式活性污泥法(intermittently aerated sequencing batch reactors,IASBR)处理养猪沼液,研究在控温30℃、分步进水条件下的短程脱氮性能.结果表明,进水化学需氧量(COD)与总氮(TN)的比值对脱氮性能影响很大,当进水COD/TN为0.8±0.2时,反应器内亚硝态氮浓度持续积累到高达800 mg·L~(-1),对TN、氨氮(NH~+_4-N)和总有机碳(TOC)的去除率仅分别为18.3%±12.2%、84.2%±10.3%、60.7%±10.7%;进水COD/TN提高到2.4±0.5后,亚硝态氮积累浓度迅速从800 mg·L~(-1)降低至10 mg·L~(-1)以下,TN、氨氮和TOC的去除率分别上升至90%、95%和85%以上.逐步缩短HRT以提高运行负荷,发现氨氮负荷是IASBR稳定脱氮的制约因素,体系耐受的氨氮负荷最大为0.30 kg·(m3·d)-1,当超过耐受负荷后,TN、氨氮和TOC的去除率将显著下降.整个运行阶段反应器内亚硝态氮积累率达74.6%~97.8%,运行稳定期实现TN去除率达90%以上,IASBR系统在低碳氮比下实现了高效稳定的短程硝化反硝化,且不需要额外添加碱度药剂,在处理高氨氮低碳氮比废水上具有优越性.  相似文献   

2.
耐高氨氮异养硝化-好氧反硝化菌TN-14的鉴定及其脱氮性能   总被引:2,自引:6,他引:2  
信欣  姚力  鲁磊  冷璐  周迎芹  郭俊元 《环境科学》2014,35(10):3926-3932
从环境中筛选出1株耐高氨氮、具有产絮、异养硝化-好氧反硝化能力的新菌株TN-14,对其进行生理生化特征及分子鉴定、异养硝化-好氧反硝化能力以及产絮性能的考察,并研究其与耐氨氮能力以及对高氨氮猪场废水的除污性能.根据菌株生理生化特征以及分子鉴定结果,可初步确定菌株TN-14为不动杆菌Acinetobacter sp..异养硝化反应体系中,24 h内菌株TN-14对氨氮、总氮的去除率分别达到97.13%和93.53%;硝酸盐反硝化体系中,24 h内硝态氮从94.24 mg·L-1降到39.32mg·L-1,硝态氮的去除率达到58.28%,反硝化速率为2.28 mg·(L·h)-1;亚硝酸盐反硝化体系中,亚硝态氮从反应初始浓度97.78 mg·L-1下降到21.30 mg·L-1,亚硝态氮去除率达78.22%,反硝化速率为2.55 mg·(L·h)-1.菌株TN-14具有良好的产絮特性,其培养液对0.4%的高岭土悬浊液的絮凝率可达94.74%;菌株TN-14能够在氨氮高达1200 mg·L-1的环境下生长.菌株TN-14对实际猪场废水中的COD、氨氮、总氮和总磷去除率分别达到85.30%、65.72%、64.86%和79.41%,在实际高氨废水生物处理中具有良好的应用前景.  相似文献   

3.
为了考察亚硝化颗粒污泥(NGS)的持续增殖能力,向柱状序批式反应器(SBR)内接种极少量种污泥,在130 d内,将氨氮容积负荷(NLR)从0.74 kg·(m~3·d)~(-1)提高到6.66 kg·(m~3·d)~(-1),成功使反应器内污泥浓度(MLSS)从0.1 g·L~(-1)增长至11.8 g·L~(-1),对应的亚硝态氮累积负荷从0.4 kg·(m~3·d)~(-1)升至4.9 kg·(m~3·d)~(-1).当NLR低于4.44 kg·(m~3·d)~(-1)时,反应器内粒径200μm的污泥数量明显增多,颗粒平均粒径大幅减小.当NLR继续提高时,颗粒平均粒径的增长过程遵循修正的Logistic模型,其比增长速率k值约为0.022 9 d-1.在运行期间,较高的游离氨(FA)和游离亚硝酸(FNA)浓度能够对亚硝酸盐氧化菌(NOB)起到联合抑制作用,这使得出水中亚硝态氮累积率(NAR)始终高于80%.上述实验结果将为工业化高效NGS反应器的启动操作提供重要参考.  相似文献   

4.
沼液SBR处理出水养殖螺旋藻   总被引:3,自引:1,他引:2  
蔡小波  郁强强  刘锐  赵远  陈吕军 《环境科学》2017,38(7):2910-2916
养猪沼液氮磷等营养物质丰富,可作为廉价的螺旋藻培养基,但其成分复杂,尤其是高氨氮等因素严重抑制螺旋藻的生长.采用序批式生物反应器(sequencing batch reactor,SBR)降低沼液中的氨氮浓度,通过改变进水中化学需氧量(chemical oxygen demand,COD)与总氮(total nitrogen,TN)的比值,研究了沼液中的亚硝态氮及硝态氮的保留情况,为螺旋藻生长提供氮源.通过对比螺旋藻在不同工况出水中的生长情况,以及氮元素的保留情况,筛选出最佳SBR工况.摇瓶试验结果表明,当进水COD/TN=3.0,出水中氨氮、硝态氮、亚硝态氮浓度分别为51.2、91.6、213.1 mg·L~(-1),此时螺旋藻具有较快生长速率,产率达到0.084 g·(L·d)~(-1).在此基础之上,通过放大螺旋藻培养规模至120L,研究了螺旋藻在室外大棚中的生长情况及螺旋藻对沼液中氮、磷元素的去除,结果表明螺旋藻在室外依然生长良好,培养10 d后,产率为(0.075±0.003)g·(L·d)~(-1),螺旋藻蛋白含量达到60%左右,养殖出水中氨氮去除率达到99%.  相似文献   

5.
亚硝化/电化学生物反硝化全自养脱氮工艺研究   总被引:6,自引:0,他引:6  
开发出了针对低C/N比高氨氮废水处理的亚硝化/电化学生物反硝化全自养脱氮新工艺,并对新工艺进行了系统的研究.试验结果表明,新工艺能取得较好的脱氮效果,在溶解氧为0.5~1.2mg·L-1,pH值为7.5~8.2,温度为17~30℃,进水氨氮浓度不高于1000 mg·L-1,C/N比不高于0.5,HRT不高于32h条件下,亚硝化/电化学反硝化工艺装置运行稳定,亚硝化段膜生物反应器(MBR)出水的氨氮去除率和亚硝氮生成率均能稳定在50%左右,MBR出水中的剩余氨氮和生成的亚硝氮经电化学生物反硝化段(硫碳混合反应器)处理后,最终出水总氮去除率超过95%;出水中的SO2-4浓度不高于1280 mg·L-1.新工艺最高氨氮负荷为1.11kg·m-3·d-1.  相似文献   

6.
城市生活污水SNAD工艺的启动研究   总被引:3,自引:0,他引:3  
采用SBR反应器,以城市生活污水为原水,进行同步亚硝化、厌氧氨氧化、反硝化(SNAD)工艺的启动研究.首先接种厌氧氨氧化(anammox)颗粒污泥,在高曝气量下(500L/h)培养得到亚硝化颗粒污泥,然后再次接种anammox颗粒污泥,在低曝气量下(40L/h)培养得到SNAD颗粒污泥.在亚硝化稳定期,氨氮平均去除率达到94%,亚硝态氮平均积累率达到95%.在SNAD稳定期,总氮平均去除率为85%.批试实验结果表明,亚硝化稳定期亚硝化颗粒污泥的好氧氨氮和亚硝态氮氧化活性分别为为0.234和0kgN/(kgVSS×d).SNAD颗粒污泥的厌氧氨氧化总氮去除、亚硝态氮反硝化、好氧氨氮氧化、好氧亚硝态氮氧化活性分别为0.158、0.104、0.281、0kg/(kgVSS×d),其中硝态氮反硝化活性在0~120min和120~360min内分别为0.061和0.104kg/(kgVSS×d).扫描电镜显示,SNAD颗粒污泥表面以短杆状菌和球状菌为主,可能为好氧氨氧化菌(AOB)和反硝化菌,颗粒污泥内部以火山口状的细菌为主,可能为anammox菌.  相似文献   

7.
李惠娟  彭党聪  陈国燕  王博  姚倩  卓杨 《环境科学》2017,38(5):1997-2005
为研究如何控制部分亚硝化系统的稳定性,在高氨氮负荷[1 kg·(m~3·d)~(-1)]和不同的双重抑制策略下启动并连续运行两个序批式反应器(sequencing batch reactors,SBRs).结果表明在温度35℃±1℃,进水氨氮负荷为1 kg·(m~3·d)~(-1)的条件下,FA和DO的双重抑制和FNA和DO的双重抑制均可成功实现高氨氮废水稳定的部分亚硝化,出水NO-2-N/NH+4-N接近1,NO-3-N浓度接近于零,满足ANAMMOX反应的进水基质要求.R1反应器在DO和FA的控制策略下,亚硝氮氧化速率从28.16mg·(g·h)~(-1)减小到0.3 mg·(g·h)~(-1)(以NO-2-N计,下同),而氨氧化速率减小43.60%,最终稳定在20 mg·(g·h)~(-1)(以NH+4-N计,下同)左右.R2反应器在DO和FNA的控制策略下,亚硝氮氧化速率从12.37 mg·(g·h)~(-1)降至0.02 mg·(g·h)~(-1),而氨氧化速率仍维持在较高水平[45 mg·(g·h)~(-1)].DO和FNA双重抑制的系统与DO和高FA双重抑制的系统相比,具有富集时间短,AOB活性高,运行稳定性强等优点,更适用于启动部分亚硝化系统及维持系统稳定性.  相似文献   

8.
改良SBR工艺实现生活污水除磷与半亚硝化   总被引:3,自引:0,他引:3  
常温条件下(20~25℃),采用序批式反应器(SBR),应用改进后的运行策略:进水、厌氧搅拌、曝气搅拌、静置沉淀、排水、选择性排泥、污泥床缺氧搅拌,控制污泥龄为20d,溶解氧为0.2~0.5mg/L,实现单污泥系统同步除磷亚硝化的稳定运行.结果表明:总磷去除率为95.9%~97.1%,出水总磷浓度为0.1~0.4mg/L,好氧阶段氨氮去除容积负荷为0.242kg N/(m3·d),出水氨氮和亚硝酸盐氮的比值约为1:1,可以为后续的厌氧氨氧化提供合适的进水.  相似文献   

9.
硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究   总被引:2,自引:4,他引:2  
周健  黄勇  刘忻  袁怡  李祥  完颜德卿  丁亮  邵经纬  赵蓉 《环境科学》2016,37(3):1061-1069
采用全混式厌氧搅拌罐,研究自养条件下,厌氧氨氧化与硫自养反硝化共同存在时,前者对系统中硫酸盐的产生和碱度消耗的影响.投加单质硫颗粒50 g·L~(-1),接种厌氧氨氧化颗粒污泥100 g·L~(-1)(湿重),控制温度35℃±0.5℃,搅拌强度120r·min-1,p H为8.0~8.4.启动硫自养反硝化阶段,进水硝酸盐浓度为200 mg·L~(-1),水力停留时间为5.3 h,反应器硝态氮负荷达0.56~0.71 kg·(m~3·d)~(-1).硫自养反硝化耦合厌氧氨氧化反应过程中,添加60 mg·L~(-1)氨氮后,硝态氮负荷仍维持在0.66~0.88kg·(m~3·d)~(-1),氨氮负荷为0.27 kg·(m~3·d)~(-1).反应体系内单位硝酸盐转化产生的硫酸盐Δn(SO~(2-)_4)∶Δn(NO~-_3)由1.21±0.06降低至1.01±0.10,Δ(IC)∶Δ(NO~-_3-N)由0.72±0.1降低至0.51±0.11,出水p H值由6.5上升至7.2.序批试实验优化反应条件:在搅拌强度G_T值为22~64 s~(-1),p H值为8.08时,耦合反应Δn(NH~+_4)∶Δn(NO~-_3)最高达到0.43,硝酸盐转化速率提升60%,过高搅拌强度(搅拌速度G_T值64 s~(-1))、不适宜的p H值(最适p H值为8.02)环境都会起同步转化效率的降低.  相似文献   

10.
以DO、ORP、pH作为两段SBR工艺的实时控制参数   总被引:20,自引:0,他引:20       下载免费PDF全文
介绍了在传统SBR脱氮工艺的基础上 ,开发的用于处理COD和氮浓度较高的工业废水的两段SBR系统 (TSSBR) .根据传统SBR工艺在反应过程中 ,当COD不再被降解 ,而硝化反应又没有开始时 ,DO迅速大幅度升高以及pH曲线上出现的拐点 ,可以将COD降解与硝化反应分割开 ,先后在不同的反应器内进行 ,分别命名为SBR1和SBR2 ,避免高COD浓度对硝化反应的冲击 ,提高处理效率 .利用在线检测的DO、ORP和pH参数实时控制SBR1、SBR2各个生化过程的反应时间 ,解决了两段SBR系统的自动控制问题 ,可以使系统长期稳定运行 ,保证出水水质 ,节约能耗 .采用实时控制策略 ,并控制系统温度在 3 0℃左右 ,可将SBR2的硝化反应控制在亚硝酸型硝化结束 .采用该工艺处理石化废水 ,COD去除率达到 90 %~ 95 % ,3 0℃时的比硝化反应速率达到 0 3kg(NH4 N) (kg(MLSS)·d) ,出水已检测不出氨氮和硝态氮  相似文献   

11.
本研究采用沸石序批式反应器(ZSBR)在常温(25℃±1℃)下实现快速稳定的亚硝化,亚硝酸盐氮积累率维持在90.0%以上,并且考察了在进水氨氮500 mg·L~(-1)时,4个不同碱度(以CaCO_3计)对ZSBR亚硝化的影响.结果表明,ZSBR实现快速亚硝化的关键是游离氨(FA)对亚硝酸盐氧化菌(NOB)的抑制作用远大于其对氨氧化菌(AOB)的抑制作用,并且经此过程转化后的含氨氮的废水,可以作为厌氧氨氧化的进水,进一步脱除水中的氨氮与总氮,当系统投加碱度(以CaCO_3计)为2 500mg·L~(-1)时,ZSBR亚硝化效果最好,平均氨氮转化率为66.7%,平均亚硝酸盐氮积累率为98.1%,平均亚硝酸盐氮产率为0.74 kg·(m~3·d)~(-1).高通量测序分析表明ZSBR长时间运行后微生物群落发生显著变化,AOB得到富集,NOB在FA的抑制作用下不断被淘洗出反应器.  相似文献   

12.
王嗣禹  刘灵婕  王芬  季民 《环境科学》2019,40(12):5430-5437
溶解氧(DO)是控制短程硝化的重要因素,其对不同的生物处理系统有不同的影响.本文研究了DO对悬浮污泥及生物膜系统短程硝化效果的影响,并利用高通量测序技术分析了微生物群落结构变化.结果表明,对于悬浮污泥系统,当DO从0. 25 mg·L~(-1)增加到0. 50 mg·L~(-1)时,氨氧化速率(AOR)从18. 08 mg·(L·h)-1升高至30. 27 mg·(L·h)-1;当曝气继续增加,DO达到3. 00 mg·L~(-1),仅运行14 d,进水氨氮(NH_4+-N)基本全部转化为硝酸盐氮(NO_3--N),且通过降低DO来恢复短程硝化效果需77 d,恢复过程缓慢.对于生物膜系统,DO由2. 50 mg·L~(-1)上升到3. 00 mg·L~(-1)的过程中,AOR稳定在11. 50~13. 50mg·(L·h)-1,当DO为3. 00 mg·L~(-1)时,80 d的运行结果显示,出水中氨氮与亚硝酸盐氮(NO_2--N)的比值可长期稳定在1∶1. 2~1∶1. 7,基本满足ANAMMOX工艺进水要求.微生物群落结构分析结果表明,悬浮污泥系统在DO从0. 25 mg·L~(-1)增加到3. 00 mg·L~(-1)的过程中,主要氨氧化菌(AOB)菌属Nitrosomonas丰度由10. 07%增长至18. 64%.当DO为3. 00 mg·L~(-1)时,生物膜系统中Nitrosomonas菌属丰度与悬浮污泥系统相近为20. 43%,且生物膜系统富集了0. 78%的ANAMMOX菌属Candidatus_Kuenenia.综上,生物膜系统内DO的变化受曝气量影响较小,短程硝化效果受DO影响较小,短程硝化速率更稳定,更适合作为ANAMMOX脱氮工艺的前处理单元.  相似文献   

13.
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   

14.
通过接种城镇污水处理厂的污泥,采用连续流反应器启动亚硝化系统并改变进水磷酸盐的浓度,研究了不同磷酸盐浓度对亚硝化系统的影响.结果表明经过14 d的运行,亚硝化系统启动成功,氨氮转化率达到92.2%,亚硝酸盐累积率为73.66%,亚硝酸盐产生速率达到14.42 g·(m~3·d)~(-1).磷酸盐浓度在10~30 mg·L~(-1)时对亚硝化系统的影响并不大;随着磷酸盐浓度持续提高,氨氮转化率在不断降低.当磷酸盐的浓度为80 mg·L~(-1)时,系统的氨氮转化率为13.6%,亚硝酸盐累积率仅18.19%,亚硝酸盐产生速率仅0.54 g·(m~3·d)~(-1),亚硝化反应受到严重抑制.将进水磷酸盐浓度降低到0,经过14 d运行,亚硝化系统获得恢复,且氨氮转化率可以达到80%以上,亚硝酸盐累积率达到86.96%,亚硝酸盐产生速率为15.63g·(m~3·d)~(-1).  相似文献   

15.
短程硝化过程是短程生物脱氮工艺中的限速步骤,在保证稳定亚硝化率的前提下,提高曝气量能够提高好氧氨氧化菌的活性,进而提高氨氧化速率.本文在序批式反应器中,通过改变曝气量,在高溶解氧条件下,考察不同曝气量对短程硝化的性能及微生物的影响.结果表明,随着曝气量的增大,氨氧化速率不断升高.单位体积曝气量为0.8、1.7、3.3、5.0 L·min-1·L-1时,氨氧化率维持在50%左右,亚硝酸盐氮积累率稳定在99%以上,平均氨氧化速率分别为0.88、0.96、1.29和1.32 mg·L-1·min-1.高通量测序分析表明,不同曝气量条件下,反应器中好氧氨氧化菌的优势菌属均为Nitrosomonas,而亚硝酸盐氧化菌都被有效抑制,Nitrospira丰度很低.此外,检出AcidovoraxDenitratisomaHyphomicrobiumIgnavibacterium等多种反硝化细菌,这些反硝化菌能够与好氧氨氧化菌共同作用,使系统发生少量内源同步硝化反硝化.综合考虑曝气能耗和反应速率,曝气量为3.3 L·min-1·L-1时,可实现控制短程硝化工艺的低耗高效运行.  相似文献   

16.
移动床生物膜反应器净化模拟水产养殖废水的研究   总被引:1,自引:0,他引:1  
采用移动床生物膜反应器(MBBR)净化模拟水产养殖废水.结果表明,MBBR净化模拟水产养殖废水效果良好.在水力停留时间(HRT)为8 h,DO为2.0~3.0 mg·L-1的条件下,反应器启动迅速、运行稳定,能使COD和氨氮去除率均达到80%以上,TP去除率达到50%左右;有机负荷为(0.76±0.03)kg·m-3·d-1时,TN及氨氮去除效果最好,去除率分别达到71.73%及98.42%.为达到良好的TN去除效果,有机负荷不宜低于0.5 kg·m-3·d-1;DO为(3.00±0.25)mg·L-1时,TN去除效果最好,最有利于同步硝化反硝化;为保持较高的氨氮去除效率,并减少亚硝态氮积累,DO浓度不应低于2.0 mg·L-1;HRT过短会使氨氮去除效率降低,且可能出现亚硝态氮积累;采用序批式进水运行方式,对TP的去除效果优于连续进水方式,但运行周期后半段会出现亚硝态氮积累,对鱼类产生危害.  相似文献   

17.
羟胺抑制协同pH调控对人工快渗系统短程硝化的影响   总被引:4,自引:0,他引:4  
陈佼  张建强  文海燕  张青  杨旭  李佳 《环境科学学报》2016,36(10):3728-3735
针对人工快渗系统(CRI)总氮去除率低的问题,研究了羟胺抑制协同pH调控对人工快渗系统实现由全程硝化向短程硝化转化的可行性,探讨了其对系统内氮素污染物迁移转化和硝化功能菌空间分布及活性的影响.结果表明,0.5 mmol·L~(-1)羟胺连续添加13 d后可实现CRI系统短程硝化的快速启动,氨氮去除率、亚硝氮积累率分别为91.1%、77.9%,经16 d不添加羟胺运行后氨氮去除率、亚硝氮积累率分别降低3.9%、9.8%,此时调控进水pH至8.4,氨氮去除率和亚硝氮积累率均超过90%,CRI系统短程硝化效果显著且稳定性较高.羟胺对硝化菌具有选择性抑制,对AOB和NOB产生明显抑制的浓度分别为0.7、0.5 mmol·L~(-1),羟胺浓度为1.0 mmol·L~(-1)时AOB和NOB活性均被严重抑制且解抑较难;pH调控对短程硝化的影响主要与游离氨(FA)的抑制作用有关,对AOB和NOB产生明显抑制的FA浓度分别为26.5、5.6 mg·L~(-1),NOB比AOB对FA的敏感性更高.  相似文献   

18.
左富民  郑蕊  隋倩雯  钟慧  陈彦霖  魏源送 《环境科学》2021,42(11):5472-5480
以两类中试反应器(SBR,116.6 m3,活性污泥法和SBBR,64.8 m3,泥膜法)为对象,接种猪场废水处理厂的活性污泥,通过控制DO、曝气方式为主和外加Na NO2为辅的亚硝酸盐调控策略,考察不同反应器在启动一体式短程硝化-厌氧氨氧化(combined partial nitritation and ANAMMOX,CPNA)工艺过程中NO2--N浓度对ANAMMOX菌的影响.结果表明,在相同运行条件下,泥膜共生的SBBR更适于短程硝化的快速启动.尽管受到NO2--N抑制(100~129 mg·L-1,共计7 d),但SBR在第39 d成功启动了ANAMMOX工艺,其TNRR和TNRE分别为0.069 kg·(m3·d)-1和23.3%,而长达17 d的NO2--N抑制(129~286mg·L-1...  相似文献   

19.
PN-ANAMMOX一体化反应器处理电子行业PCB废水   总被引:2,自引:0,他引:2  
袁砚  李祥  周呈  陈宗姮 《环境科学》2015,36(7):2591-2596
利用已经启动成功并达到稳定脱氮效能的部分亚硝化-厌氧氨氧化一体化反应器,研究碱性印制电路板(PCB)废水自养生物脱氮的可行性及运行特性.结果表明,将进水NH+4-N浓度维持在220 mg·L-1时,经过80 d的运行,一体化反应器出水NH+4-N、NO-2-N浓度降低并稳定在4.0 mg·L-1和9.8 mg·L-1左右,脱氮效能最高达到1.29 kg·(m3·d)-1.同时出水总氮小于50 mg·L-1,满足接管排放标准.一体化反应器内好氧区NO-2-N产生速率最高为2.05 kg·(m3·d)-1,厌氧区的厌氧氨氧化菌最高脱氮效能为2.91 kg·(m3·d)-1,说明各功能菌在相应区域得到稳定地增长.一体化反应器适用于无机含氨的碱性PCB废液自养生物脱氮处理.  相似文献   

20.
张玉君  李冬  王歆鑫  张杰 《环境科学》2021,42(9):4383-4389
为了探究间歇梯度曝气下污泥龄对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的影响,研究短程硝化内源反硝化除磷系统对于处理低C/N比生活污水的优势作用,本文采用SBR反应器培养好氧颗粒污泥,实验进水采用实际生活污水.结果表明,在SRT由50 d逐渐降低至30 d过程中,比氨氧化速率由3.16 mg·(g·h)-1增加至4.38 mg·(g·h)-1,比亚硝酸盐氧化速率由3.4 mg·(g·h)-1降为1.8 mg·(g·h)-1左右,可知NOB活性降低约44%,从而使系统实现了短程硝化.当SRT为30 d时,由典型周期实验可知亚硝酸盐最大积累量可达6.93mg·L-1.由于系统中污泥浓度随SRT的减少而略有降低,因此在反应进行至40 d左右时根据DO曲线采取降低曝气量的策略,最终SRT为30 d时系统出水COD浓度为40.76 mg·L-1,TN浓度为12.4 mg·L-1,TP浓度为0.31 mg·L-1,强化了系统中C、N和P的同步去除,最终得到了稳定运行的短程硝化内源反硝化除磷系统.同时好氧颗粒污泥EPS含量与SRT呈现负相关性,蛋白质含量由污泥龄为50 d的66.7 mg·g-1升为30 d的95.1mg·g-1,多糖保持在12.1~17.2 mg·g-1的范围内,说明SRT的降低对蛋白质含量的影响较多糖大,当SRT为30 d时,PN/PS值保持在6.2左右,好氧颗粒污泥在该条件下仍能保持较好的结构稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号