首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Alapi T  Dombi A 《Chemosphere》2007,67(4):693-701
The gas-phase photooxidations of CCl(4), CHCl(3), CH(2)Cl(2) and their binary mixtures in an O(2) stream were studied in a flow reactor under various experimental conditions using a low-pressure mercury lamp as light source covered with a high-purity silica sleeve being used. The 184.9 nm VUV irradiation emitted is responsible for the Cl-C bond rupture in the chlorinated methanes and for the formation of O(3) from O(2). The rate of degradation of H-containing chlorinated methanes increased sharply on increase of their initial concentrations, most probably of a (*)Cl chain reaction, as indicated by the increase in the molar ratio of the amount of HCl formed to the amount of H-containing target substance decomposed. The experimental results suggested that the further transformations of the radicals and products formed play an important role as (*)Cl sources, causing a considerably higher rate of decomposition of the H-containing target substances. In a humidified O(2) stream, the (*)OH formed opens up another route for oxidation of the target substances. Thus, the rates of degradation of CH(2)Cl(2) and CHCl(3) increased on increase of the relative humidity, whereas the water vapour had no effect at all on the decomposition of CCl(4). At the same time, competition occurs between (*)Cl or (*)OH for reactions with the target substance. The photooxidation of binary mixtures was investigated too. The addition of CCl(4) or CHCl(3) to CH(2)Cl(2) strongly increased its degradation rate. The addition of CH(2)Cl(2) did not have a considerable effect on the rate of degradation of CHCl(3).  相似文献   

3.
The concept that control of organic substances in emissions should be based on the relative ability to cause the effects associated with photochemical air pollution (reactivity) rather than on gross emission levels has gained wide acceptance. Two general types of reactivity response scales have been proposed. One of these is based on rates of hydrocarbon reaction or nitrogen dioxide formation. This scale covers a wide range because of the very high rates associated with olefins having internal double-bonds. The other scale is based on product yields combined with biological effect measurements. This type of scale is considered superior to one based on rates. This latter scale covers a narrow response range because olefins with internal double bonds have only slightly higher product yields and biological effects than do other reactive olefins and alkylbenzenes. Use of a response scale based on product yields and biological effects also permits use of less detailed instrumental procedures. A simple subtractive column technique combined with a flame ionization analyzer should be sufficient to estimate hydrocarbon emissions. Gas chromatographic analyses of hydrocarbon emissions are of value when used with either type of reactivity response scale. However, detailed gas chromatographic analyses are essential for a response scale based on rates. The response scale based on product yields and biological effects indicates much less improvement in reactivity from fuel composition changes than would be predicted from a response scale based on rates. The most desirable approach is to use a variety of control and engine modification techniques to reduce all reactive organics to the lowest level possible.  相似文献   

4.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

5.
The geochemical suitability of a deep bedrock repository for radioactive waste disposal is determined by the composition of geomatrix and groundwater. Both influence radionuclide solubility, chemical buffer capacity and radionuclide retention. They also determine the chemical compatibility of waste forms, containers and backfill materials. Evaluation of different groundwater-host rock systems is performed by modeling the geochemical environments and the resulting radionuclide concentrations. In order to demonstrate the evaluation method, model calculations are applied to data sets available for various geological formations such as granite, clay and rocksalt. The saturation state of the groundwater-geomatrix system is found to be fundamental for the evaluation process. Hence, calculations are performed to determine if groundwater is in equilibrium with mineral phases of the geological formation. In addition, corrosion of waste forms in different groundwater is examined by means of reaction path modeling. The corrosion reactions change the solution compositions and pH, resulting in significant changes of radionuclide solubilities. The results demonstrate that geochemical modeling of saturation state and compatibility of the host formation environment with the radioactive waste proves to be a feasible tool for evaluation of various sites considered as deep underground repositories.  相似文献   

6.
Sorption and desorption of Yb(III) were studied on hematite and on alumina using a surface complexation model. The experimental methodology was conceived to allow an analysis of the data using a constant capacitance model. The FITEQL code was used for the calculations.The experimental results tend to show reversibility of sorption when the surface loading is small, and irreversibility when the surface loading is high. Surface complexation modeling gives a good interpretation of these two phenomena, taking into account hydroxylation of the surface complexes. In these two cases, it is possible to describe sorption and desorption curves with the same surface stoichiometries and the same surface complexation constants. The existence of these surface complexes depends on the pH of the solution, surface loading, and reaction direction.  相似文献   

7.
The effect of the characteristics of the surface on the phototransformation of acridine, one of the most abundant azapolycyclic compounds encountered in urban atmospheres, and of one of its principal photoproducts, acridone, was studied when adsorbed onto models of the atmospherice particulate matter. For this purpose, relative photodegradation rates were determined from absorption or emission intensities as a function of irradiation times, and some products were isolated and characterized. The relative photodegradation rates of adsorbed acridine show the tendency (NH(4))(2) SO(4) > MgO > Al(2)O(3) >SiO(2). In general, the rates decrease as the fraction of protonated acridine species on the surface increases in MgO, Al(2)O(3), and SiO(2), except for (NH(4))(2) SO(4) where a fast surface reaction occurs. Oxygen reduces the photodestruction rates by as much as 40 to 60% when compared to an inert atmosphere, implying the participation of an acrideine triplet state in the transformation processes on all surfaces except on (NH(4))(2)SO(4). Acridone, a major product, undergoes a photoinduced tautomerization to 9-hydroxy acridine. The formation of a dihydrodiol, another photoproduct of acridine, is suggested by comparison to reported spectral properties of these compounds. This is formed through a singlet oxygen reaction. Photoproducts showing the absence of the narrow absorption band of 250 nm, characteristic of the pi -->pi* transition in tricyclic aromatics, were detected in small yields but not identified. These results suggest possible photochemical transformation pathways that could lead to the ultimate fate of these pollutants in the environment.  相似文献   

8.
Hexabromocyclododecanes (HBCDs) are high production volume chemicals currently produced in quantities exceeding 20000ty(-1). They are used as flame retardants for plastics and textiles. HBCDs are thermally labile compounds, rapidly decomposing at temperatures above 250 degrees C to form bromine radicals, which scavenge other radicals formed during pyrolysis. But certain HBCD stereoisomers must reach the environment without decomposition, because their levels in soils, sediments, and biota are increasing worldwide. The fate of individual HBCD stereoisomers during production, product use, disposal, and transformation in the environment remains unclear. Herein we report on the thermally induced, highly selective isomerization of (+) and (-)beta-HBCD. Regio- and stereoselective migration of only two of the six bromine atoms resulted in the racemization of both beta-HBCDs. First order rate constants (k(rac)) increased from 0.005, 0.011, 0.021, to 0.055min(-1) at 130, 140, 150, and 160 degrees C, corresponding to half life times tau(1/2) of 143, 63, 29, and 14min, respectively. From the deduced kinetic model, we conclude that any thermal treatment of enantiomerically enriched beta-HBCDs in the range of 100-160 degrees C will result in a loss of most optical activity within few hours. The simultaneous inversion of two asymmetric centers occurred with perfect stereocontrol. Selectively, vicinal dibromides with the RR- and the SS-configurations migrated at these temperatures. An intramolecular reaction mechanism with a four-center transition state is postulated, based on the obtained stereoisomer pattern and the observed reaction kinetics. Crystal structure analysis revealed that all vicinal dibromides in beta-HBCDs prefer synclinal (gauche) conformations. However, an antiperiplanar (staggered) conformation is assumed to facilitate the concerted 1.2-shifts of both bromine atoms, resulting in an inversion of both neighboring carbon atoms. First experiments with other HBCD stereoisomers suggest that the presented isomerization mechanism is of relevance for those stereoisomers as well.  相似文献   

9.
The geochemical suitability of a deep bedrock repository for radioactive waste disposal is determined by the composition of geomatrix and groundwater. Both influence radionuclide solubility, chemical buffer capacity and radionuclide retention. They also determine the chemical compatibility of waste forms, containers and backfill materials. Evaluation of different groundwater–host rock systems is performed by modeling the geochemical environments and the resulting radionuclide concentrations. In order to demonstrate the evaluation method, model calculations are applied to data sets available for various geological formations such as granite, clay and rocksalt.The saturation state of the groundwater–geomatrix system is found to be fundamental for the evaluation process. Hence, calculations are performed to determine if groundwater is in equilibrium with mineral phases of the geological formation. In addition, corrosion of waste forms in different groundwater is examined by means of reaction path modeling. The corrosion reactions change the solution compositions and pH, resulting in significant changes of radionuclide solubilities. The results demonstrate that geochemical modeling of saturation state and compatibility of the host formation environment with the radioactive waste proves to be a feasible tool for evaluation of various sites considered as deep underground repositories.  相似文献   

10.
The nitroaromatic compounds 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT) and 2,4-dinitroanisole (DNAN) are potential environmental contaminants and their transformations under a variety of environmental conditions are consequently of great interest. One possible method to safely degrade these nitrocompounds is alkaline hydrolysis. A mechanism of the initial stages of this reaction was investigated computationally. Simulations of UV-VIS and NMR spectra for this mechanism were also produced. The results obtained were compared to available experimental data on the alkaline hydrolysis of TNT and suggest that the formation of Meisenheimer complexes and an anion of TNT are potential first-step intermediates in the reaction path. As the reaction proceeds, computational results indicate that polynegative complexes dominate the degradation pathway, followed by cycles of carbon chain opening and breaking. A second possible pathway was identified that leads to polymeric products through Janovsky complex formation. Results from this study indicate that the order of increasing resistance to alkaline hydrolysis is TNT, DNT and DNAN.  相似文献   

11.
Liu C  Yang B  Gan J  Zhang Y  Liang M  Shu X  Shu J 《Chemosphere》2012,87(5):470-476
Organophosphorus pesticides (OPPs) emit into the atmosphere in both gas and particulate phases via spray drift from treatments and post-application emission, but most of their degradations in the atmosphere are not well known. In this study, the heterogeneous reactions of nitrate (NO3) radicals with three typical OPPs (parathion, malathion, and fenthion) absorbed on azelaic acid particles are investigated using an online vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The reaction products observed with the VUV-ATOFMS are identified on the basis of GC/MS analysis of the products in the reaction between NO3 radicals and the coating of the pesticide. Paraoxon is identified as the only product of parathion; malaoxon and bis(1,2-bis-ethoxycarbonylethyl)disulfide as the products of malathion; fenoxon, fenoxon sulfoxide, fenthion sulfoxide, fenoxon sulfone, and fenthion sulfone as the products of fenthion. The degradation rates of parathion, malathion, and fenthion under the experimental conditions are 5.5 × 10−3, 5.6 × 10−2, and 3.3 × 10−2 s−1, respectively. The pathways of the heterogeneous reactions between the three OPPs and NO3 radicals are proposed. The experimental results reveal the possible transformations of these OPPs through the oxidation of NO3 radicals in the atmosphere.  相似文献   

12.
L Wang  A Tang 《Chemosphere》2012,89(8):950-956
The atmospheric polychlorinated dibenzo-p-dioxins (PCDDs) partition appreciably in the gas phase, where they undergo rapid oxidation. The atmospheric oxidation mechanisms of a few PCDDs, initiated by OH radical, are studied using density functional theory calculations. The oxidations start with OH-addition to the aromatic rings, dominantly at γ-sites, followed by the non-chlorinated β-sites; while additions to the α-sites or chlorinated sites are negligible. For PCDDs with all β-sites being chlorinated, formation of PCDD-γ-OH adducts become virtually the only reaction path. Under the atmospheric conditions, the PCDD-β/γ-OH adducts combine with O2 slowly at rates <1 s−1. Instead, the PCDD-β-OH adducts will react with O2 through hydrogen abstraction at rates <50 s−1, forming PCDD-β-ol, and the PCDD-γ-OH adducts will decompose to the substituted phenoxy radicals by fused-ring C-O bond cleavage at rates of 103 ∼ 105 s−1. The reaction mechanisms of PCDDs are drastically different from the peroxy mechanism for the atmospheric oxidations of benzene and dibenzofuran.  相似文献   

13.
Experiments were carried out in a windtunnel to test the theoretical model for the dispersion of a stack plume heavier than air developed by Ooms et al. (1974, First Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries, The Hague). Particular attention was paid to the initial conditions which have to be supplied in order to make model calculations possible. A good agreement between experimental results and model predictions was found for the plume path and the density distribution along the plume axis. The velocity distribution inside the plume was less well predicted.  相似文献   

14.
《Chemosphere》2013,90(11):1376-1383
Risk assessment of xenobiotics requires a comprehensive understanding of their transformation in the environment. As most of the transformation processes usually involve a redox reaction or a hydrolysis as the first steps of the transformation, we applied an approach that uses an electrochemical cell to investigate model “redox” reactions in aqueous solutions for environmental processes. We investigated the degradation of a variety of xenobiotics from polar to nonpolar and analyzed their degradation products by on-line coupling of electrochemistry with mass spectrometry (EC–MS). Furthermore, we evaluated possible binding reactions with regard to the generation of non-extractable residues with some model substances (catechol, phthalic acid, γ-l-Glutamyl-l-cysteinyl-glycine (GSH) and l-histidine) deduced from a natural organic matter (NOM) structure model and identified possible binding-sites.Whereas typically investigations in soil/water-systems have been applied, we used to our knowledge for the first time a bottom-up approach, starting from the chemicals of interest and different model substances for natural organic matter to evaluate chemical binding mechanisms (or processes) in the EC–MS under redox conditions. Under oxidative conditions, bindings of the xenobiotics with catechol, GSH and histidine were found, but no reactions with the model compound phthalic acid were observed. In general, no chemical binding has yet been found under reductive conditions. In some cases (i.e. benzo[a]anthracene) the oxidation product only underwent a binding reaction, whereas the xenobiotic itself did not undergo any reactions.EC–MS is a promising fast and simple screening method to investigate the environmental behavior of xenobiotics and to evaluate the potential risks of newly synthesized substances.  相似文献   

15.
As part of a program aimed at developing a field process for cleanup of PCB contaminated soils using photochemistry in basic 2-propanol, additional details of the dechlorination pathway are presented. The mechanism involves a chain reaction with both homolytic photochemical C-Cl bond fission and electron transfer steps producing PCB anion radicals. Kinetics of dechlorination of various congeners show patterns of relative rates associated with the basic 2-propanol medium that are not found in other media because both electron transfer and photochemical homolysis steps determine overall rates of dechlorination and govern the pathways and relative concentrations of intermediates. The electron transfer steps display opposite structure-reactivity correlations to the photo-homolysis, C-Cl bond fission steps. Oxygen quenching is shown to differentially affect both types of steps. In contrast to the suggestion that inter system crossing can be highly efficient with reaction originating from a PCB triplet, oxygen quenching data suggest that a significant minimum of the quantum yield is non-quenchable, presumably because of a reaction path from the PCB singlet. This may help to explain why exclusion of air is not entirely necessary in practice.  相似文献   

16.
The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO2. The bubble point pressure and fugacity variation with temperature is different for CO2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.  相似文献   

17.
研究了辉光放电等离子体降解水中典型的环境内分泌干扰物邻苯二甲酸二丁酯(DBP)及降解过程中过氧化氢(H2O2)的生成规律。考察了电解质种类、共存污染物(甲醇、叔丁醇)及催化剂等条件对DBP降解及H2O2生成的影响。结果表明,在硫酸钠溶液中DBP降解效率和H2O2生成速率最高;甲醇、叔丁醇等共存污染物对DBP降解和H2O2生成有抑制作用;Fe2+,Fe3+和Cu2+对DBP的降解有催化作用,其催化效果为Fe2+>Fe3+>Cu2+。用高效液相色谱、离子色谱及气质联用仪等仪器分析了降解中间产物,提出了可能的降解机理。  相似文献   

18.
Anthraquinone-2-sulphonate (AQ2S) under UVA irradiation is able to oxidise nitrite to (·)NO(2) and to induce the nitration of phenol. The process involves the very fast reactions of the excited triplet state (3)AQ2S(*) and its 520-nm absorbing exciplex with water, at different time scales (ns and μs, respectively). Quinones are ubiquitous components of coloured dissolved organic matter (CDOM) in surface waters and AQ2S was adopted here as a proxy of CDOM. Using a recently developed model of surface-water photochemistry, we found that the oxidation of nitrite to (·)NO(2) by (3)CDOM(*) could be an important (·)NO(2) source in water bodies with high [NO(2)(-)] to [NO(3)(-)] ratio, for elevated values of column depth and NPOC.  相似文献   

19.
W. James Catallo 《Chemosphere》1996,33(12):2543-2563
The transformation of 19 N-, O-, and S- heterocycles (NOSHs) was examined in estuarine sediment-water microcosms. The effects of redox potential (Eh) and sediment particle size on compound transformation rates were evaluated, and stable products were identified. Results from stirred, controlled Eh/pH microcosms (CEPMs) showed that most of the NOSHs were significantly transformed under oxidized and reduced conditions over 15 week incubations, and the resulting product distributions were similar. In general, the rates and extent of transformation were greater in oxidized sediments of low surface area vs. those with high particle surface area and reduced redox conditions. Further experiments in sealed, unstirred microcosms also showed that NOSH transformation proceeded more slowly and on fewer compounds in fine vs. coarser grained sediments under oxidized conditions. Unlike the stirred systems, however, NOSH transformation rates were similar or greater under reduced vs. oxidized conditions. Thus, reduced, methanogenic clay of high surface area displayed some of the fastest rates of NOSH transformation. Data from liquid-liquid partitioning experiments suggested that this effect was related to the formation of NOSH complexes with iron and perhaps other redox-active metals in sediments.  相似文献   

20.
Abstract

The effects of the herbicide triclopyr (3,5,6‐trichloro‐2‐pyridinyloxyacetic acid) on the mineralization of 2,4‐D (2,4‐dichlorophenoyxacetic acid) in two soils which differed in their histories of prior exposure to the two herbicides were investigated. The relative effects of triclopyr on 2,4‐D mineralization and most probable numbers of 2,4‐D degraders were dependent upon the soil. Triclopyr was shown to increase 2,4‐D mineralization rates in a soil which had been exposed to both 2,4‐D and triclopyr, but decreased the mineralization rate of 2,4‐D and inhibited the increase of most probable numbers of 2,4‐D degraders in a soil that had not been directly exposed to either herbicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号