首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we reported that there are subfamily differences in drone production in queenless honey bee colonies, but these biases are not always explained by subfamily differences in oviposition behavior. Here we determine whether these puzzling results are best explained by either inadequate sampling of the laying worker population or reproductive conflict among workers resulting in differential treatment of eggs and larvae. Using colonies composed of workers from electrophoretically distinct subfamilies, we collected samples of adult bees engaged in the following behavior: true egg laying, false egg laying, indeterminate egg laying, egg cannibalism, or nursing (contact with larvae). We also collected samples of drone brood at four different ages: 0 to 2.5-h-old eggs, 0 to 24-h-old eggs, 3 to 8-day-old larvae, and 9 to 14-day-old larvae and pupae. Allozyme analyses revealed significant subfamily differences in the likelihood of exhibiting egg laying, egg cannibalism, and nursing behavior, as well as significant subfamily differences in drone production. There were no subfamily differences among the different types of laying workers collected from each colony, suggesting that discrepancies between subfamily biases in egg-laying behavior and drone production are not due to inadequate sampling of the laying worker population. Subfamily biases in drone brood production within a colony changed significantly with brood age. Laying workers had significantly more developed ovaries than either egg cannibals or nurses, establishing a physiological correlate for the observed behavioral genetic differences. These results suggest there is reproductive conflict among subfamilies and individuals within queenless colonies of honey bees. The implications of these results for the evolution of reproductive conflict, in both queenright and queenless contexts, are discussed.  相似文献   

2.
Summary The alarm reaction of groups of honey bee workers was quantified using a metabolic bioassay. The genetic structure of these groups was varied in order to estimate the effects of worker interactions. Though the group phenotype was mainly determined by additive interactions, nonlinear effects were also found. Mixed worker groups, combined from colonies with similar reactivity in the bioassay, showed a stronger response than pure groups. This phenomenon, analogous to the overdominance model for individuals in classical genetics, has implications for mechanisms of natural and artificial selection in social populations and for the evolution of polyandry in social Hymenoptera.  相似文献   

3.
There have been numerous reports of genetic influences on division of labor in honey bee colonies, but the effects of worker genotypic diversity on colony behavior are unclear. We analyzed the effects of worker genotypic diversity on the phenotypes of honey bee colonies during a critical phase of colony development, the nest initiation phase. Five groups of colonies were studied (n = 5–11 per group); four groups had relatively low genotypic diversity compared to the fifth group. Colonies were derived from queens that were instrumentally inseminated with the semen of four different drones according to one of the following mating schemes: group A, 4 A-source drones; group B, 4 B-source drones; group C, 4 C-source drones; group D, 4 D-source drones; and group E, 1 drone of each of the A-D drone sources. There were significant differences between colonies in groups A-D for 8 out of 19 colony traits. Because the queens in all of these colonies were super sisters, the observed differences between groups were primarily a consequence of differences in worker genotypes. There were very few differences (2 out of 19 traits) between colonies with high worker genotypic diversity (group E) and those with low diversity (groups A-D combined). This is because colonies with greater diversity tended to have phenotypes that were average relative to colonies with low genotypic diversity. We hypothesize that the averaging effect of genotypic variability on colony phenotypes may have selective advantages, making colonies less likely to fail because of inappropriate colony responses to changing environmental conditions.  相似文献   

4.
Reproduction by worker honey bees (Apis mellifera L.)   总被引:2,自引:0,他引:2  
Summary Genetic markers were used to study the reproductive behavior of worker honey bees. Five experiments were conducted that demonstrate the significance of worker reproduction. Biases were found in the egg-laying success of workers belonging to different subfamilies within queenless colonies, however, members of all subfamilies laid eggs. These biases were probably not a consequence of direct reproductive competition among subfamily members but most likely represent genetic variability for the timing of the onset of oviposition. Workers preferentially oviposit in drone-sized cells, demonstrating a caste-specific adaptation for oviposition behavior. Drone brood production is highly synchronous within colonies and can result in the production of more than 6000 drones before colonies die. Workers reproduce in queenright colonies but at a very low frequency.  相似文献   

5.
Foraging behavior and the mechanisms that regulate foraging activity are important components of social organization. Here we test the hypothesis that brood pheromone modulates the sucrose response threshold of bees. Recently the honeybee proboscis extension response to sucrose has been identified as a ”window” into a bee’s perception of sugar. The sucrose response threshold measured in the first week of adult life, prior to foraging age, predicts forage choice. Bees with low response thresholds are more likely to be pollen foragers and bees with high response thresholds are more likely to forage for nectar. There is an associated genetic component to sucrose response thresholds and forage choice such that bees selected to hoard high quantities of pollen have low response thresholds and bees selected to hoard low quantities of pollen have higher response thresholds. The number of larvae in colonies affects the number of bees foraging for pollen. Hexane-extractable compounds from the surface of larvae (brood pheromone) significantly increase the number of pollen foragers. We tested the hypothesis that brood pheromone decreases the sucrose response threshold of bees, to suggest a pheromone- modulated sensory-physiological mechanism for regulating foraging division of labor. Brood pheromone significantly decreased response thresholds as measured in the proboscis extension response assay, a response associated with pollen foraging. A synthetic blend of honeybee brood pheromone stimulated and released pollen foraging in foraging bioassays. Synthetic brood pheromone had dose-dependent effects on the modulation of sucrose response thresholds. We discuss how brood pheromone may act as a releaser of pollen foraging in older bees and a primer pheromone on the development of response thresholds and foraging ontogeny of young bees. Received: 24 May 2000 / Revised: 26 September 2000 / Accepted: 15 October 2000  相似文献   

6.
Summary Apis mellifera workers are able to discriminate the degree of relatedness to themselves of larvae and to preferentially rear queens from related larvae. They employ cues of genetic, not environmental origin, and workers which have only experienced unrelated brood nonetheless prefer related (but novel) over unrelated (but familiar) larvae. Thus worker bees possess the sensory capabilities and behavioral responses that would enable them to maximize their individual inclusive fitness through nepotism in queen rearing.  相似文献   

7.
Summary Colonies and smaller social groups of honeybees (Apis mellifera carnica L.) show distinct free-running circadian rhythms similar to that of individual organisms. The workers of a colony synchronize their individual rhythms to one overall group rhythm. Caste plays an important role in this synchronization process. Queens were introduced into worker groups which were entrained to a phase-shifted light/dark cycle. The introduction of the queen caused a shift in the free-running phase under constant dark conditions. Single introduced workers had no effect on the free-running rhythms. This indicates that the queen plays an important role in the synchronization of circadian rhythms of honeybee colonies.  相似文献   

8.
Foraging and the mechanisms that regulate the quantity of food collected are important evolutionary and ecological attributes for all organisms. The decision to collect pollen by honey bee foragers depends on the number of larvae (brood), amount of stored pollen in the colony, as well as forager genotype and available resources in the environment. Here we describe how brood pheromone (whole hexane extracts of larvae) influenced honey bee pollen foraging and test the predictions of two foraging-regulation hypotheses: the indirect or brood-food mechanism and the direct mechanism of pollen-foraging regulation. Hexane extracts of larvae containing brood pheromone stimulated pollen foraging. Colonies were provided with extracts of 1000 larvae (brood pheromone), 1000 larvae (brood), or no brood or pheromone. Colonies with brood pheromone and brood had similar numbers of pollen foragers, while those colonies without brood or pheromone had significantly fewer pollen foragers. The number of pollen foragers increased more than 2.5-fold when colonies were provided with extracts of 2000 larvae as a supplement to the 1000 larvae they already had. Within 1 h of presenting colonies with brood pheromone, pollen foragers responded to the stimulus. The results from this study demonstrate some important aspects of pollen foraging in honey bee colonies: (1) pollen foragers appear to be directly affected by brood pheromone, (2) pollen foraging can be stimulated with brood pheromone in colonies provided with pollen but no larvae, and (3) pollen forager numbers increase with brood pheromone as a supplement to brood without increasing the number of larvae in the colony. These results support the direct-stimulus hypothesis for pollen foraging and do not support the indirect-inhibitor, brood-food hypothesis for pollen-foraging regulation. Received: 5 March 1998 / Accepted after revision: 29 August 1998  相似文献   

9.
10.
Variability exists among worker honey bees for components of division of labor. These components are of two types, those that affect foraging behavior and those that affect life-history characteristics of workers. Variable foraging behavior components are: the probability that foraging workers collect (1) pollen only; (2) nectar only; and (3) pollen and nectar on the same trip. Life history components are: (1) the age the workers initiate foraging behavior; (2) the length of the foraging life of a worker; and (3) worker length of life. We show how these components may interact to change the social organization of honey bee colonies and the lifetime foraging productivity of individual workers. Selection acting on foraging behavior components may result in changes in the proportion of workers collecting pollen and nectar. Selection acting on life-history components may affect the size of the foraging population and the distribution of workers between within nest and foraging activities. We suggest that these components define possible sociogenic pathways through which colony-level natural selection can change social organization. These pathways may be analogous to developmental pathways in the morphogenesis of individual organisms because small changes in behavioral or life history components of individual workers may lead to major changes in the organizational structure of colonies. Correspondence to: R.E. Page, Jr.  相似文献   

11.
12.
Summary To place social insect foraging behavior within an evolutionary context, it is necessary to establish relationships between individual foraging decisions and parameters influencing colony fitness. To address this problem, we examined interactions between individual foraging behavior and pollen storage levels in the honey bee, Apis mellifera L. Colonies responded to low pollen storage conditions by increasing pollen intake rates 54% relative to high pollen storage conditions, demonstrating a direct relationship between pollen storage levels and foraging effort. Approximately 80% of the difference in pollen intake rates was accounted for by variation in individual foraging effort, via changes in foraging activity and individual pollen load size. An additional 20% resulted from changes in the proportion of the foraging population collecting pollen. Under both high and low pollen storage treatments, colonies returned pollen storage levels to pre-experimental levels within 16 days, suggesting that honey bees regulate pollen storage levels around a homeostatic set point. We also found a direct relationship between pollen storage levels and colony brood production, demonstrating the potential for cumulative changes in individual foraging decisions to affect colony fitness. Offprint requests to: J.H. Fewell at the current address  相似文献   

13.
Summary Experimental hives obtained from cordovan queens that were instrumentally inseminated with semen from one cordovan and one Italian drone were set up and allowed to swarm. Cordovan provides a resessive genetic marker system (cuticle color) so that the workers from the cordovan and Italian male lines are distinguishable. Our results show that these patrilineal worker groups segregate non-randomly during colony fission and this segregation cannot be explained by observed age structure. Evidence of innate kin recognition in bees has been previously established. We argue that kin recognition could be responsible for the observed non-random grouping of kin during swarming.  相似文献   

14.
The pollen hoarding syndrome consists of a large suite of correlated traits in honey bees that may have played an important role in colony organization and consequently the social evolution of honey bees. The syndrome was first discovered in two strains that have been artificially selected for high and low pollen hoarding. These selected strains are used here to further investigate the phenotypic and genetic links between two central aspects of the pollen hoarding syndrome: sucrose responsiveness and pollen hoarding. Sons of hybrid queen offspring of these two strains were tested for sucrose responsiveness and used to produce colonies with either a highly responsive or an unresponsive father. These two colony groups differed significantly in the amount of pollen stored on brood combs and with regard to their relationship between brood and pollen amounts. Additionally, four quantitative trait loci (QTL) for pollen hoarding behavior were assessed for their effect on sucrose responsiveness. Drone offspring of two hybrid queens were phenotyped for responsiveness and genotyped at marker loci for these QTL, identifying some pleiotropic effects of the QTL with significant QTL interactions. Both experiments thus provided corroborating evidence that the distinct traits of the pollen hoarding syndrome are mechanistically and genetically linked and that these links are complex and dependent on background genotype. The study demonstrates genetic worker–drone correlations within the context of the pollen hoarding syndrome and establishes that an indirect selection response connects pollen hoarding and sucrose responsiveness, regardless of which trait is directly selected.  相似文献   

15.
Summary Honey bee workers are able to nurse or to destroy and thus to recognize the capped queen cells containing a pupa. Fatty acid esters, especially methyl oleate, methyl palmitate and ethyl oleate were found in significant amounts on the queen pupal cuticle. Methyl oleate, the major component, along with smaller amounts of methyl linoleate and methyl linolenate, were involved in the recognition of queen cells by workers. In natural conditions of the colony, queen cells containing a paraffin pupal lure with methyl oleate were accepted 5.9 days by workers, releasing about 1.8 queen pupa equivalents during that period, when control cells (without ester) were kept only 2.1 days. Although these esters are non specific to honey bees, they are of great importance in social regulation of the honey bee colony.  相似文献   

16.
17.
18.
Two-way selection for quantities of stored pollen resulted in the production of high and low pollen hoarding strains of honey bees (Apis mellifera L.). Strains differed in areas of stored pollen after a single generation of selection and, by the third generation, the high strain colonies stored an average 6 times more pollen than low strain colonies. Colony-level organizational components that potentially affect pollen stores were identified that varied genetically within and between these strains. Changes occurred in several of these components, in addition to changes in the selected trait. High strain colonies had a significantly higher proportion of foragers returning with loads of pollen, however, high and low strain colonies had equal total numbers of foragers Colony rates of intake of pollen and nectar were not independent. Selection resulted in an increase in the number of pollen collectors and a decrease in the number of nectar collectors in high strain colonies, while the reciprocal relationship occurred in the low strain. High and low strain colonies also demonstrated different diurnal foraging patterns as measured by the changing proportions of returning pollen foragers. High strain colonies of generation 3 contained significantly less brood than did low strain colonies, a consequence of a constraint on colony growth resulting from a fixed nest volume and large quantities of stored pollen. These components represent selectable colony-level traits on which natural selection can act and shape the social organization of honey bee coloniesCommunicated by R.F.A. Moritz  相似文献   

19.
The fitness of a social insect colony depends greatly on the quality (i.e., mating ability, fecundity, and offspring viability) of its queen(s). In honeybees, there is marked variation in the quality of young queens that compete in a series of lethal duels to replace a colonys previous queen. Workers interact with queens during these duels and could increase their inclusive fitness by biasing the outcomes of the duels in favor of high-quality queens. We predicted that workers will have more antagonistic interactions (chasing, grabbing, clamping) and fewer beneficent interactions (feeding, grooming) with low-quality than high-quality queens. To test this prediction, we reared queens from 0-day-old, 2-day-old, and 3-day-old worker larvae in observation colonies undergoing queen replacement, thus producing high-quality, low-quality, and very low-quality queens, respectively. Immediately after each queen emerged, we observed her for 1 h to record her interactions with the workers. Subsequent morphological measurement of the queens confirmed that initial larval age had a significant effect on queen quality. However, there was no consistent effect of queen quality on the rates of worker–queen interactions, thus falsifying our hypothesis. The mean power of our tests was high (0.599), therefore the probability of a type II error (a false negative) is low. We conclude that if workers actively select high-quality queens, then they do so prior to queen duels, during queen development. We suggest that each worker–queen interaction has a distinct adaptive significance rather than forming a suite of behavior that favors particular queens (e.g., chasing repels any queen that approaches a queen cell, thus protecting all queen cells from destruction).Communicated by M. Giurfa  相似文献   

20.
Unlike workers of all other honey bee (Apis mellifera) subspecies, workers of the Cape honey bee of South Africa (A. mellifera capensis) reproduce thelytokously and are thus able to produce female offspring that are pseudoclones of themselves. This ability allows workers to compete with their queen over the maternity of daughter queens and, in one extreme case, has led to a clonal lineage of workers becoming a social parasite in commercially managed populations of A. mellifera scutellata. Previous work (Jordan et al., Proc R Soc Lond B Biol Sci 275:345, 2008) showed that, in A. mellifera capensis, 59% of queen cells produced during swarming events contained the offspring of workers and that, of these, 65% were the offspring of non-natal workers. Here, we confirm that a substantial proportion (38.5%) of offspring queens is worker-laid. We additionally show that: (1) Although queens produce most diploid female offspring sexually, we found some homozygous or hemizygous queen offspring, suggesting that queens also reproduce by thelytoky. These parthenogenetic individuals are probably nonviable beyond the larval stage. (2) Worker-laid offspring queens are viable and become the resident queen at the same frequency as do sexually produced queen-laid offspring queens. (3) In this study, all but one of the worker-derived queens were laid by natal workers rather than workers from another nest. This suggests that the very high rates of social parasitism observed in our previous study were enhanced by beekeeping manipulations, which increased movement of parasites between colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号