首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyun S  Jafvert CT  Lee LS  Rao PS 《Chemosphere》2006,63(10):1621-1631
Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.  相似文献   

2.
Historical profiles and sources of PAHs at two typical sediment cores (i.e., the shipping route site and the shoal site) were fully compared to probe the controlling factors, specifically the water currents, for the PAHs deposition processes in the Yangtze River Estuary. Compared with ocean water currents, river runoff affected by the water impoundment of the Three Gorges Dam greatly affected the PAHs levels and percent contribution of PAHs sources in the two cores. River runoff hindered the PAHs deposition in shoal site, while a contrary phenomenon was observed for the shipping route site. Though the PAHs in the estuary were mainly from river catchment, only low ring PAHs in the shipping route site were mainly from the upper reach of the river. Coarse sediments with higher organic carbon content also accounted for the higher deposition levels of PAHs in the shipping route site.  相似文献   

3.
Xia XH  Yu H  Yang ZF  Huang GH 《Chemosphere》2006,65(3):457-466
The contamination of polycyclic aromatic hydrocarbons (PAHs) has become one of the major problems in the Yellow River of China. As the Yellow River is the most turbid large river in the world, it remains unknown to which extent the high suspended sediment content in the river may affect the fate and effect of PAHs. Here we report the effect of sediment on biodegradation of chrysene, benzo(a)pyrene and benzo(g,h,i)perylene with phenanthrene as a co-metabolism substrate in natural waters from the Yellow River. Biodegradation kinetics of the PAHs in the river water with various levels of sediment contents were studied in the laboratory by fitting with a biodegradation kinetics model for organic compounds not supporting growth. The results indicated that the biodegradation rates of PAHs increased with the sediment content in the water. When the sediment contents were 0, 4 and 10 g/l, the biodegradation rate constants of chrysene with the initial concentration of 3.80 microg/l were 0.053, 0.084 and 0.111 d(-1), respectively. Further studies suggested the enhanced biodegradation rate in the presence of sediment was caused by the following mechanisms: (1) the population of PAH-degrading bacteria in the water system was found to increase with the sediment content; the bacteria population on sediment phase was far greater than that on water phase during the cultivation process; (2) the sorption of PAHs on the sediment phase was well described by the dual adsorption-partition model. Although the sorption capacity of PAH per unit weight of sediment decreased with the increase of the sediment content, the amount of sorbed PAH increased with the sediment content; and, (3) the desorption of PAHs from the solid phase led to a higher concentration near the water-sediment interface. Since the bacteria were also attached to the interface, this resulted in an increased contact chance between the bacteria and PAHs.  相似文献   

4.
A novel laboratory microcosm test was developed to measure the diffusion of native PAHs and PCBs from sediments in the presence and absence of a capping layer. Diffusive flux of 15 PAHs and 7 PCBs from uncapped sediment from Oslo harbour was 3.8+/-0.9 microg m(-2)d(-1) and 0.010+/-0.003 microg m(-2)d(-1), respectively. The flux from sediments capped with 1cm mineral cap (crushed limestone or crushed gneiss (0-2mm)), observed during the first 410 d, was 3.5-7.3% of the flux from uncapped sediments. By measuring freely dissolved pore water concentrations of 10 PAHs the flux in the microcosm was modelled with steady state and transient diffusion models. The measured flux from uncapped sediment was 27-290% of modelled steady state flux. Good agreement was also found between the measured flux of pyrene from capped sediment and the flux modelled with the transient model when fitting only with the distribution coefficients for pyrene between the cap material and water (Kd_pyr). Fitted Kd_pyr, (210 and 23 l kg(-1) for limestone and gneiss, respectively) was in the same order of magnitude as K(d) calculated from organic carbon content in the cap materials (68 and 14 l kg(-1) respectively). Calculation of the efficiency of a hypothetical cap with 10 cm diffusion path shows that the increased diffusion path length alone can yield a flux reduction >99% through a strong increase in the stagnant diffusive boundary layer from <1 to 100mm.  相似文献   

5.
Treated wastewater effluent from Las Vegas, Nevada and surrounding communities’ flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0-10, 10-20, and 20-30 cm. The greatest number of detections in samplers buried in the sediment was at the 0-10 cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment-water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.  相似文献   

6.
A pilot-scale field simulation was conducted to estimate the air emissions from contaminated dredged material stored in a confined disposal facility (CDF). Contaminated dredged material with a variety of organic chemicals, obtained from Indiana Harbor Canal, was used in the study. It was placed in an outdoor CDF simulator (i.e., a lysimeter of dimensions 4 ft x 4 ft x 2 ft). A portable, dynamic flux chamber was used to periodically measure emissions of various polynuclear aromatic hydrocarbons (PAHs). A weather station was set up to monitor and record the meteorological conditions during the experiment. The fluxes of several PAHs were monitored over time for 6 1/2 months. Initial 6-hr average fluxes varied from 2 to 20 ng/cm2/hr for six different PAHs. The flux values declined rapidly for all compounds soon after placement of the dredged material in the CDE Chemical concentrations derived from flux values were generally of low magnitude compared with ambient standards. Data obtained from the experiment were compared against those predicted using models for air emissions. Model simulations showed that initially the flux was largely from exposed pore water from saturated (wet) sediment, whereas the long-term flux was controlled by diffusion through the pore air of the unsaturated sediment. Model predictions generally overestimated the measured emissions. A rainfall event was simulated, and the dredged material was reworked to simulate that typical of a CDF operation. Increased flux was observed upon reworking the dredged material.  相似文献   

7.
Song J  Luo YM  Zhao QG  Christie P 《Chemosphere》2003,50(6):711-715
Small soil suction samplers have been used for several years to sample soil solution for chemical analysis in laboratory and glasshouse experiments. They are very cheap, effective and convenient. Here we describe for the first time their use in studies on sediment porewater. Bulk sediment from West Lake, a shallow hypereutrophic lake in Hangzhou, Zhejiang Province, China, was placed in laboratory microcosms and incubated in the dark at 25 degrees C for 182 days to evaluate the feasibility of using the samplers to extract sediment porewater and to estimate NH4+ flux across the sediment-water interface under anaerobic conditions. The results show that the samplers were capable of sequentially extracting sediment porewater, 15 ml of which could be readily extracted for analysis within 30-45 min by vacuum applied using a plastic syringe. The NH4+ flux under laboratory conditions was characterized by a fast phase during the initial 18 days of incubation followed by a slower linear phase, with average release rates of 11.6 and 3.6 mg N m(-2) d(-1), respectively.  相似文献   

8.
A model to estimate the entry length to a fully developed diffusive boundary layer above a sediment bed, such as those found in lakes, reservoirs, rivers, and estuaries, is presented. The model is used to determine how the length of a sediment bed in mass-transfer experiments influences the measured vertical diffusive flux at the sediment-water interface. A nondimensional local mass flux is introduced in the form of a Sherwood number (Sh) and expressed as a function of both the distance from the leading edge of the sediment bed (x) and the Schmidt number (Sc). Similarly, a mean Sherwood number (Sh(ave)) for a sediment bed of length (L) is introduced. The diffusive boundary layer grows with distance, and its thickness depends on the Schmidt number (i.e., the diffusive boundary layer gets thicker and develops more quickly as the Schmidt number decreases). For Schmidt numbers greater than or equal to 100, the diffusive boundary layer begins to develop slowly but is fully developed when the nondimensional horizontal coordinate (x+) is approximately 1000. The Sherwood number is largest (i.e., infinity) near the leading edge of the sediment bed (i.e., at x = 0), decreases as the distance from the bed increases, and, finally, approaches a constant value for a fully developed diffusive boundary layer (Sh(infinity)). In this paper, the distance to a fully developed diffusive boundary layer (L99) and the required length of a sediment bed are related explicitly to Sc, sheer velocity (U*), and the relative errors of local or average Sherwood numbers (Sh or Sh(ave), respectively) against the Sherwood number for the fully developed diffusive boundary layer (Sh(infinity)). The lengths L99 and L decrease as the Schmidt number increases and become independent of the Schmidt number when Sc is greater than 1000. A longer sediment bed is needed when the shear velocity or the Schmidt number is small (e.g., L99 and L approximately 1.0 m and 8.0 m, respectively, for Sc = 500, U* = 0.1 cm/s, and a 3% acceptable error). Experimental studies may not be able to meet these requirements and an adjustment of measured mass-transfer rates at a sediment-water interface may be necessary. The magnitude of that adjustment is up to 50%. Its dependence on the Schmidt number, shear velocity, and bed length is given in this paper.  相似文献   

9.
The distribution of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in water, sediment and pore water of the Jiulong River Estuary and Western Xiamen Sea, China. Total PAH concentrations varied from 6.96 to 26.9 microg/l in water, 59-1177 ng/ g dry weight in surficial sediments, and 158-949 microg/l in pore water. The PAHs were present in higher levels in pore water than in surface water, due possibly to higher concentrations of dissolved organic carbon or colloids with which the hydrophobic pollutants were strongly associated. Such a concentration gradient implies a potential flux of pollutants from sediment pore water to overlying water. The levels of PAHs in water and pore water were significantly higher than those found in 1998, suggesting recent inputs of these compounds into the area and re-working of sediment phase. The composition pattern of PAHs in the three phases was dominated by high molecular weight PAHs, in particular 5-ring PAHs. The salinity profile of dissolved PAHs suggested that they all behaved non-conservatively due to deviation from the theoretical dilution line. No correlation was found between PAH concentrations in sediment and those in pore water, and the correlation between the partition coefficients of PAHs and sediment organic carbon content was not significant, suggesting the complexity of the partition behaviour of PAHs. As a result of high PAH concentrations in water and pore water, it is likely that they may have caused mortality to certain exposed organisms.  相似文献   

10.
Impacts of chemical contaminants associated with dumping of dredged urban river sediments at a coastal disposal area in Saronikos Gulf (Eastern Mediterranean) were investigated through a combined approach of sediment toxicity testing and active biomonitoring with caged mussels. Chemical analyses of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs), Cu, and Zn in combination with the solid phase Microtox® test were performed on sediments. Concentrations of PAHs, AHs, Cu, and Zn as well as multiple biomarkers of contaminant exposure and/or effects were measured in caged mussels. Sediments in the disposal and neighboring area showed elevated PAHs and AHs concentrations and were characterized as toxic by the solid-phase Microtox® test during and after dumping operations. Biomarker results in the caged mussels indicated sublethal effects mainly during dumping operations, concomitantly with high concentrations of PAHs and AHs in the caged mussel tissues. Cu and Zn concentrations in sediments and caged mussels were generally not elevated except for sediments at the site in the disposal area that received the major amount of dredges. High PAHs and AHs levels as well as sublethal effects in the caged mussels were not persistent after termination of operations. The combined bioassay–biomarker approach proved useful for detecting toxicological impacts of dredged river sediment disposal in sediments and the water column. Nevertheless, further research is needed to evaluate whether sediment toxicity will have long-term effects on benthic communities of the disposal area.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) in a sediment core taken from intertidal flat in the Yangtze Estuary were determined by gas chromatography-mass spectrometry. The results indicate that the total concentration of PAHs ranged from 0.08 to 11.74 microg/g. The concentration levels of total and individual PAHs changed dramatically with depth. The concentrations of PAHs were relatively high above 35 cm depth and remained constantly low below this depth. The historical record of PAHs in the core shows subsurface maximum (one or more peak values), followed by decreased levels to the surface and with depth. And, PAH sediment record in the core profile is in agreement with historically sewage discharge events during the 1980s to 1990s. The distribution of target molecule acenephthene, the fluoranthene/pyrene ratio, the proportion of 2-3-ring and 4-5-ring PAHs, and alkylated naphthalene to parent naphthalene in the core profile show that the sources in this area are characterized by petroleum-derived PAH contamination (mainly sewage discharge and the river runoff) and the incorporation of atmospheric inputs. Studies indicate the PAH profile pattern in this site in comparison with other regions appear to reflect its particular local position (near the sewage outlet). Moreover, physico-chemical conditions and sedimentation rate as well as biodegradation also affect the PAH concentration levels in the core sediments.  相似文献   

12.
J Aigars 《Chemosphere》2001,45(6-7):827-834
The redox-dependent variations in concentrations of phosphorus at two different accumulation bottom areas were investigated in the Gulf of Riga (Baltic Sea) between December 1993 and January 1995. The sediment samples from nine sampling occasions were analyzed for phosphorus forms and redox potential. The average concentrations of total phosphorus measured in 0-1 cm (65 and 89 micromol P g(-1) for sites G5 and T3, respectively) were among the highest reported from the entire Baltic Sea. Redox-dependent "mobile" phosphorus (MP) contributed more than 50% of total in the uppermost-oxidized centimeter, whereas in reduced layers it was 16-18% throughout the year. The significant differences (ANOVA, P<0.01) among months of inorganic phosphorus (IP) concentration at 0-1 cm were observed at site G5 due to temporary accumulation of mobile phosphorus mediated by redox-dependent bacteria activity during summer. On the contrary no accumulation was observed at T3 probably as a result of low redox potential caused by high accumulation rates and low bioturbation. Although the water column above sediments remained oxic throughout the investigation period, the redox potential at site T3 was close to the redoxcline (i.e., +230 mV) during summer. Further increase of eutrophication might lead to development of anoxic conditions at sediment-water interface and that in turn will result in rapid release of redox-dependent phosphorus stored in surface sediments. The availability of excess phosphorus will further enhance eutrophication in partly phosphorus-limited Gulf of Riga.  相似文献   

13.
Sivey JD  Lee CM 《Chemosphere》2007,66(10):1821-1828
To assess the ca. 20-year polychlorinated biphenyl (PCB) contamination trends in Lake Hartwell, SC, sediment cores from the Twelve Mile Creek arm were collected in July 2004 at two sites (G30 and G33) first sampled in the mid-1980s. Congener-specific PCB data as a function of depth from the sediment-water interface for the 2004 sediment samples were compared to data obtained from 1987 and 1998 samples taken from the same locations. Despite modest decreases in total PCB levels near the G30 sediment-water interface, historical increases in average degrees of chlorination may elevate the overall toxic risk at this site. Unlike G30, the more rapid recovery in the near-surface sediment of G33 suggests that the effectiveness of the U.S. EPA natural attenuation record of decision is site-specific and is unlikely to result in uniform surface sediment recovery throughout the most contaminated regions of Lake Hartwell.  相似文献   

14.
Liu Y  Yu N  Li Z  Wei Y  Ma L  Zhao J 《Chemosphere》2012,89(7):893-899
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were detected in sediment cores and surface sediment samples from the Liangtan River of Chongqing, Southwest China. The total concentration of 16 PAHs ranged from 69 to 6251 ng g−1. The spatial distribution of the PAHs reflects the intensity and scope of human activity in the catchment. A historical record of PAH contamination was reconstructed using a sediment core from a background segment of the river. The characteristic changes of concentrations, fluxes and patterns of 16 PAHs over the past ∼90 years were captured in detail. An obvious peak of PAH concentration and flux was found in the 1940s, i.e., during war time, and then a sharp increase was observed from the early 1980s to the present. The maximum concentration and flux reached 1260 ng g−1 and 470 ng cm−2 year−1, respectively. The sharp increase was attributed to the contribution of pyrogenic sources of PAHs. The population, length of highways and energy consumption of Chongqing, as indexes of socioeconomic development, were positively correlated with PAH input in the sediment core from the 1950s to the present. The results clearly show that the local socioeconomic development in the last decades remarkably aggravated the environmental load of sedimentary PAHs.  相似文献   

15.
Nonaqueous phase liquid (NAPL) dissolution was studied in three-dimensional (3D) heterogeneous experimental aquifers (25.5 cm x 9 cm x 8.5 cm) with two different longitudinal correlation lengths (2.1 cm and 1.1 cm) and initial spill volumes (22.5 ml and 10.5 ml). Spatial and temporal distributions of NAPL during dissolution were measured using magnetic resonance imaging (MRI). At high NAPL spill volume, average effluent concentrations initially increased during dissolution, as NAPL pools transitioned to NAPL ganglia, and then decreased as the total NAPL-water interfacial area decreased over time. Experimental results were used to test six dissolution models: (i and ii) a one-dimensional (1D) model using either specific NAPL-water interfacial area values estimated from MR images at each time step (i.e., 1D quasi-steady state model), or an empirical mass transfer (Sh') correlation (i.e., 1D transient model), (iii and iv) a multiple analytical source superposition technique (MASST) using either the NAPL distribution determined from MR images at each time step (i.e., MASST steady state model), or the NAPL distribution determined from mass balance calculations (i.e., MASST transient model), (v) an equilibrium streamtube model, and (vi) a 3D grid-scale pool dissolution model (PDM) with a dispersive mass flux term. The 1D quasi-steady state model and 3D PDM captured effluent concentration values most closely, including some concentration fluctuations due to changes in the extent of flow reduction. The 1D transient, MASST steady state and transient, and streamtube models all showed a monotonic decrease in effluent concentration values over time, and the streamtube model was the most computationally efficient. Changes during dissolution of the effective NAPL-water interfacial area estimated from imaging data are similar to changes in effluent concentration values. The 1D steady state model incorporates estimates of the effective NAPL-water interfacial area directly at each time point; the 3D PDM does so indirectly through mass balance and a relative permeability function, which causes reduced water flow through high saturation NAPL regions. Hence, when model accuracy is required, the results indicate that a surrogate of this effective interfacial area is required. Approaches to include this surrogate in the MASST and streamtube models are recommended.  相似文献   

16.
Two recirculating microcosms were used to study the fate of the polycyclic aromatic hydrocarbon (PAH) benz(a)anthracene (BA) near the sediment-water interface. In the absence of direct sunlight, degradation of 14C-labeled BA added to the water column was followed in the water column, in the sediment reservoir, and in the polychaete . Extensive metabolism of BA was observed in all components of the system.  相似文献   

17.
Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons   总被引:30,自引:0,他引:30  
Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 microg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 microg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.  相似文献   

18.
Guo W  He M  Yang Z  Lin C  Quan X  Wang H 《Chemosphere》2007,68(1):93-104
This study investigated the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, suspended particulate matter (SPM) and sediment of Daliao River watershed composed of the Hun River, Taizi River, and Daliao River. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and principal component analysis (PCA). The total concentrations of PAHs ranged from 946.1 to 13448.5 ng l(-1) in surface water, from 317.5 to 238518.7 ng g(-1) dry weight in SPM, and from 61.9 to 840.5 ng g(-1) dry weight in sediments. The levels of PAHs are relatively higher in water and SPM, and lower in sediments, in comparison with those reported for other rivers and marine systems around the world. The composition of PAHs in these mediums was mainly 4-6 rings PAHs. The higher contents of low molecular weight PAHs in the water and SPM suggest a relatively recent local source of PAHs, entered into the river via wastewater discharge and atmospheric way. On the other hand, the heavy pollution of PAHs in sediment and water near heavy industrial area suggests that PAHs have been released from industrial wastewater.  相似文献   

19.
Tonghui River, a typical river in Beijing, People's Republic of China, was studied for its water and sediment quality, by determining the levels of 16 polycyclic aromatic hydrocarbons (PAHs), 12 polychlorinated biphenyls (PCBs) and 18 organochlorine pesticides in water and sediment samples. Total PAHs, PCBs and organochlorine pesticides concentrations in water varied from 192.5 to 2651 ng/l, 31.58-344.9 ng/l and 134.9-3788 ng/l, respectively. The total PAHs, PCBs and organochlorine pesticides concentrations in surficial sediments were 127-928 ng/g, 0.78-8.47 ng/g and 1.79-13.98 ng/g dry weight, respectively. The results showed that the concentration of these selected organic pollutants in sediment was higher than those in surface water. It may be due to the fact that organic hydrophobic pollutants tend to stay in the sediments. The PAHs were dominated by 2-, 3-ring components in water samples and by 3- and 4-ring compounds in sediment. For organochlorines, alpha-HCH, delta-HCH, Heptachlor, Endosulfan II, DDT are the major organochlorine pesticides in water while Heptachlor, Dieldrin and DDE composed of 95% of total organochlorine pesticides in sediment. For HCHs (HCHs=alpha-HCH+beta-HCH+gamma-HCH+delta-HCH), the predominance of alpha-HCH of total HCHs were clearly observed in water and sediment. PCB18, PCB31 and PCB52 were predominant in water, on average these compounds collectively accounted for 67% of total PCBs. But in sediment, the predominant compounds were PCB28, PCB31 and PCB153, which accounted for 71% of total PCBs in sediment. The levels of micro pollutants in our study areas were compared with other studies.  相似文献   

20.
Experiments were conducted to compare the sorption and desorption of phenanthrene and its primary degradation product, 1-hydroxy-2-naphthoic acid (HNA), in estuarine sediment, humic acid (HA) and humin. Ionic composition, ionic strength (0.4 M) and pH (7.6) were employed to mimic native estuarine pore water at the sediment-water interface. Sorption to whole sediment and organic matter (OM) fractions was significantly lower for HNA than for phenanthrene. Whereas HNA did not sorb to HA, uptake to sediment and humin was observed, suggesting that HNA does not bind directly to OM. Phenanthrene uptake was characterized by hysteretic behavior and exhibited slow desorption. In contrast, HNA initially was more readily desorbed from sediment and humic fractions, but a significant fraction was not recovered in repeated desorption runs. The lower sorption of HNA reflects its greater polarity and water solubility, but the consistent retention of a non-desorbing fraction suggests strong binding and/or chemical transformation reactions may be important. It was postulated that abiotic transformation of HNA may occur in estuarine sediments, in part due to the presence of redox active minerals (Fe(III) and Mn(IV) oxides). The presence of Fe and Mn solids in the estuarine sediment was verified by sequential extraction and studies were then conducted to investigate the transformation of HNA in the presence of synthetic goethite (alpha-FeOOH) and birnessite (delta-MnO2) as model solids. Reaction with birnessite led to transformation of all HNA in solution within 24 h and resulted in the formation of partial oxidation products (POPs). Following reaction with goethite, HNA was present in solution and POPs were observed in the weakly bound fraction. This study indicates that degradation products of polycyclic aromatic hydrocarbons (PAHs) may have distinctly different sorption affinities and reactivities toward environmental surfaces than their parent compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号