首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model of urban air pollution is described in which the pollutant is represented by fluid particles. The particles move randomly to simulate the effect of atmospheric turbulence and are also advected on the mean wind field. The concentration of pollutant at any point is given by the local density of particles. This approach provides great generality and flexibility for handling complex and time-varying emissions and atmospheric conditions. The model has been applied to sulphur dioxide in Melbourne.  相似文献   

2.
Lee CL  Kuo LJ 《Chemosphere》1999,38(4):807-821
This study presents an overall sorption model to estimate the sorption equilibrium coefficients of hydrophobic organic pollutants for heterogeneous aquatic systems. This proposed model combines a series of sorption equilibrium relationships including the adsorption of dissolved organic matters on particulates, the binding between organic pollutants and dissolved organic matters, and the sorption of organic pollutants on particulates with or without the presence of dissolved organic matters. By using this model, variations among the sorption equilibrium coefficients with the concentrations of dissolved organic matters are obtained. Also discussed herein are case studies involving pollutants having a wide spectrum of K(ow)s, different types of dissolved organic matters, different pH values and ionic strengths. In most of the case studies, the sorption equilibrium coefficients initially increase with the-concentrations of dissolved organic matters and, then, decrease after reaching a maximum value. This study also addresses the relative errors of partition coefficients attributed to the negligence of the effect caused by the dissolved organic matter, the so-called third-phase effect.  相似文献   

3.
A three-site cation exchange model is proposed to describe the concentration dependent uptake of Cs on natural argillaceous rock systems. Major premises in the model are that the sorption of Cs is dominated by the illite mineral component in the rock and that there is a fixed relationship between the site capacities of the three site types denoted as frayed edge, type II and planar sites. The definition of a “reference illite” with a cation exchange capacity of 0.2 equiv. kg-1 allows the three site capacities to be fixed in the model calculations over the weight fraction of illite in the argillaceous rocks. Up to Cs equilibrium concentrations of 10-3 M sorption occurs predominantly on the frayed edge and type II sites (higher affinity sites), with the planar site type playing only a minor role. Competition with Cs for sorption on the former two site types arises predominantly from monovalent cations such as K, Rb and NH4 which have low hydration energies. H and Na (except at high concentrations) are considerably less competitive and bivalent cations such as Mg, Ca and Sr are effectively non-competitive. A consistent set of selectivity coefficients for Cs with respect to K, Rb, NH4 and Na was derived from analyses and modelling of a wide range of Cs sorption data available in the open literature on pure illites from many different sources. The model was tested against four Cs sorption isotherm data sets determined on argillaceous rocks: Boom clay, Oxford clay, Palfris marl and Opalinus clay. The water chemistries and illite contents given in these experiments allowed the Cs sorption isotherms to be predicted. It is concluded that the Cs sorption model presented here, in which there are no free parameters, can be used to predict the uptake of Cs at equilibrium concentrations below 10-3 M to within a factor of 2 to 3 in natural argillaceous rock systems.  相似文献   

4.
A sorption kinetics model for arsenic adsorption to magnetite nanoparticles   总被引:1,自引:0,他引:1  

Introduction  

Arsenic is a well known water contaminant that causes toxicological and carcinogenic effects. In this work magnetite nanoparticles were examined as possible arsenic sorbents. The objective of this work was to develop a sorption kinetics model, which could be used to predict the amount of arsenic adsorbed by magnetite nanoparticles in the presence of naturally occurring species using a first-order rate equation, modified to include adsorption, described by a Langmuir isotherm.  相似文献   

5.
Fiber filters commonly used to collect aerosols for various analyses also collect gaseous organic chemicals during sampling. These sorbed chemicals can lead to serious artifacts, particularly when analyzing aerosols for organic compounds and organic carbonaceous material. To date, this sorption process has only been looked at for a few types of filters and compound classes. This work presents a comprehensive study of this sorption process for various, widely used fiber filters and a broad variety of compound classes. Furthermore, important factors have been investigated, including relative humidity, temperature, baking and exposure to ambient air during sampling. From these data, poly-parameter linear-free energy relationships were derived that allow for estimations of sorption constants of gaseous organic compounds on different filter types. Based on the results, recommendations are provided to help predict, minimize and ensure reproducibility of artifacts caused by gaseous organic compounds sorbing to fiber filters.  相似文献   

6.
There is increasing pressure to control gaseous acidifying emissions to prevent harmful environmental effects; many governments are looking for a more effective and scientific means of assessing effects and planning emission controls compared with arbitrarily uniform percentage reductions. The critical loads/levels concept may offer the basis for a solution which is acceptable internationally. There is already agreement to map the critical loads and levels for countries in Europe and North America as a first step towards assessment. Recent developments in defining and quantifying critical loads and levels show the approach could be sufficiently adaptable to apply to the effects of different pollutants on a range of environmental receptors. Whilst it is difficult to arrive at an agreed single definition, various international groups have arrived at definitions which suit their own particular purposes. Despite a variety of different approaches to arriving at estimates of critical loads, there is broad agreement at the figures calculated by the different methods. An extension of the concept, the target load/level, provides a practical solution for implementing control strategies to prevent or minimize environmental effects.  相似文献   

7.
A gaseous deposition model, based on a realistic canopy stomatal resistance submodel, is described, analyzed and tested. This model is designed as one of a hierarchy of simulations, leading up to a “big-leaf” model of the processes contributing to the exchange of trace gases between the atmosphere and vegetated surfaces. Computations show that differences in plant species and environmental and physiological conditions can affect the canopy stomatal resistance by a factor of four. Canopy stomatal resistances to water vapor transfer computed with the present model are compared against values measured with a porometer and computed with the Penman-Monteith equation. Computed stomatal resistances from a soybean canopy in both well-watered and water-stressed conditions yield good agreement with test data. The stomatal resistance submodel responds well to changing environmental and physiological conditions. Model predictions of deposition velocities are evaluated for the case of ozone, transferred to maize. Calculated deposition velocities of O3 overestimate measured values on the average by about 30%, probably largely as a consequence of uncertainties in leaf area index, soil and cuticle resistances, and other modeling parameters, but also partially due to imperfect measurement of O3 deposition velocities.  相似文献   

8.
This paper presents a semi-analytical solution for the steady advection–diffusion equation that allows simulating the vertical turbulent dispersion of air pollution with deposition to the ground. The performances of the solution, with a proper parameterization of the vertical profiles of wind and eddy diffusivity, were evaluated against Hanford diffusion experiment dataset using two tracers (Doran and Horst, 1985): a non-depositing gas (SF6) and depositing particles (ZnS). Results show that the dispersion model with the K-parameterization included produces a good fitting of the measured ground-level concentration data and there are no big differences between the parameterizations taken from literature. A comparison with other models was shown and discussed.  相似文献   

9.
Abstract

A quantification analysis for evaluation of gaseous pollutant volatilization as a result of mass transfer from stored swine manure is presented from the viewpoint of residence time distribution. The method is based on evaluating the moments of concentration vs. time curves of both air and gaseous pollutants. The concept of moments of concentration histories is applicable to characterize the dispersal of the supplied air or gaseous pollutant in a ventilated system. The mean age or residence time of airflow can be calculated from an inverse system state matrix [B]‐1 of a linear dynamic equation describing the dynamics of gaseous pollutant in a ventilated airspace. The sum elements in an arbitrary row i in matrix [B]‐1 is equal to the mean age of airflow in airspace i. The mean age of gaseous pollutant in airspace i can be obtained from the area under the concentration profile divided by the equilibrium concentration reading in that space caused by gaseous pollutant sources. Matrix [B]‐1 can also be represented in terms of the inverse local airflow rate matrix ([W]‐1), transition probability matrix ([P]), and air volume matrix ([V]) as, [B]‐1 =[W]‐1[P][V]. Finally the mean age of airflow in a ventilated airspace can be interpreted by the physical characteristics of matrices [W] and [P]. The practical use of the concepts is also applied in a typical pig unit.  相似文献   

10.
The sorption of volatile organic compounds (VOCs) by different building materials can significantly affect VOC concentrations in indoor environments. In this paper, a new model has been developed for simulating VOC sorption and desorption rates of homogeneous building materials with constant diffusion coefficients and material–air partition coefficients. The model analytically solves the VOC sorption rate at the material–air interface. It can be used as a “wall function” in combination with more complex gas-phase models that account for non-uniform mixing to predict sorption process. It can also be used in conjunction with broader indoor air quality studies to simulate VOC exposure in buildings.  相似文献   

11.
Atmospheric diffusion models for particulate and gaseous pollutants emitted from an elevated continuous point source have been developed. The models are analytical and obtained from the solutions of steady state three-dimensional atmospheric transport-diffusion equations associated with the primary pollutant and with the secondary pollutant converted chemically from the primary pollutant. The surface dry deposition and the gravitational settling are taken into account in the models. The conversion of gaseous species to paniculate pollutant, the role of settling velocity and the effects of dry deposition velocity of gaseous species on the paniculate pollutant are analyzed.  相似文献   

12.
In this paper, an attempt is made for the 24-hr prediction of photochemical pollutant levels using a neural network model. For this purpose, a model is developed that relates peak pollutant concentrations to meteorological and emission variables and indexes. The analysis is based on measurements of O3 and NO2 from the city of Athens. The meteorological variables are selected to cover atmospheric processes that determine the fate of the airborne pollutants while special care is taken to ensure the availability of the required input data from routine observations or forecasts. The comparison between model predictions and actual observations shows a good agreement. In addition, a series of sensitivity tests is performed in order to evaluate the sensitivity of the model to the uncertainty in meteorological variables. Model forecasts are generally rather insensitive to small perturbations in most of the input meteorological data, while they are relatively more sensitive in changes in wind speed and direction.  相似文献   

13.
14.
Beattie GA  Seibel JR 《Chemosphere》2007,68(3):528-536
Understanding foliar uptake processes for organic air pollutants is critical to predicting the fate of these compounds, including their entry into the food chain and their susceptibility to plant-, microbe-, and light-mediated degradation. We characterized the uptake kinetics for gaseous phenol and p-cresol into the leaves of maize seedlings in a closed system over periods up to 23h. When leaves were exposed to mixtures of phenol and p-cresol (3-50microg l(-1) each), the air concentrations of the compounds rapidly decreased, showing residence times of 4-6h. The stomata of the leaves were mostly or completely closed, suggesting that uptake was primarily through the cuticle. The involvement of a cuticular uptake pathway was confirmed based on increased uptake into two cuticular mutants of maize. Models of the uptake data suggested that, at the concentrations used, phenol and p-cresol were taken up in a biphasic manner, consistent with previous two-compartment models for foliar uptake of lipophilic compounds via a cuticular pathway. These models also indicated that phenol was taken up at a slightly faster rate than p-cresol. To begin to understand the fate of these compounds, we examined the location of (14)C in leaves exposed to (14)C-phenol. Significantly more (14)C accumulated in the terminal centimeter than in the central and basal regions of the leaves on both a mass and area basis. This is the first demonstration that a gaseous organic compound, or its breakdown products, accumulates in a spatially non-uniform manner in leaves following foliar uptake. These findings support a role for plants as natural, or deliberate, attenuators of airborne pollutants, and suggest potential availability of these compounds to the leaf surface microflora.  相似文献   

15.
16.
The frequency of co-occurrences for SO2NO2, SO2/O3 and O3/NO2 at rural and remote monitoring sites in the United States was characterized for the months of May-September for the years 1978–1982. Minimum hourly concentrations of 0.03 and 0.05 ppm of each gas were used as the criteria for defining a ‘co-occurrence’. The objectives of this study were to:
  • 1.(1) identify the types of co-occurrence patterns and their frequency;
  • 2.(2) identify whether the frequency of hourly simultaneous co-occurrences increased substantially when the minimum concentration was lowered (e.g. from 0.05 to 0.03 ppm) for each pollutant; and
  • 3.(3) determine whether the frequency of co-occurrences showed large year-to-year variation.
For all pollutant pairs and co-occurrence thresholds (i.e. 0.03 and 0.05 ppm), the frequency of daily and hourly co-occurrences was low for most sites. Year-to-year variability was found to be insignificant; most of the monitoring sites experienced co-occurrences of any type less than 12% of the 153 days. Based on our observations, researchers attempting to assess the potential effects of SO2/NO2, SO2/O3 and O3/NO2 in the United States should construct simulated exposure regimes so that
  • 1.(1) hourly simultaneous and daily simultaneous-only co-occurrences are fairly rare and
  • 2.(2) when co-occurrences are present, complex-sequential and sequential-only co-occurrence patterns predominate.
  相似文献   

17.
18.
A puff diffusion model, which includes wind shear and dynamic plume rise, is developed for numerical prediction of pollutant concentrations under unsteady and non-uniform flow conditions. The plume from a continuous source is treated as a series of puffs emitted successively from the source. Each puff is represented by a set of six tracer particles, which define the size, shape and location of the puff. Initially these particles are located at the surface of the source, on arbitrarily chosen orthogonal axes. The location of the particles is computed at each time step by taking into account advection, eddy diffusion, wind shear and entrainment of ambient air during plume rise. The concentration distribution of each puff is determined by fitting an ellipsoid to the cluster of the six particles and assuming a three-dimensional Gaussian distribution, with standard deviation equal to the half-lengths of the principal axes of the ellipsoid. The concentration at a point of interest is obtained by summing the contributions from nearby puffs. The effect of wind shear on the pollutant concentration is investigated by use of a typical wind shear encountered in the atmosphere. The results show that, at 600 m downstream from the source, the present model gives concentrations a factor of 2 higher and lower at one standard deviation below and above the plume center, respectively, than that of conventional models in which no wind shear is considered. The plume-rise formulation is calibrated against the observations compiled by Briggs and the model is used to predict the trajectory of a plume observed by Slawson and Csanady. Excellent agreement between the prediction and the observation can be achieved if an appropriate eddy diffusivity is chosen.  相似文献   

19.
In this paper, the development of a three-dimensional numerical pollutant transport model, which is coupled with a previously developed hydrodynamic model, is delineated in details. Special features of the model include orthogonal curvilinear coordinate in the horizontal direction and sigma coordinate in the vertical direction. Besides, a simple but efficient open boundary condition of pollutant transport is adopted. It is then applied to simulate the transport of a representative water quality parameter chemical oxygen demand in Manganese (CODMn) in the Pearl river estuary, which is the largest estuary in South China. It can be shown, from the simulated results, that there exists a transboundary action between Guangdong province and Hong Kong special administrative region for the pollutants in the wastewater discharged from Pearl river delta region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号