首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
褐煤活性炭吸附处理焦化废水   总被引:5,自引:1,他引:5  
研究褐煤活性炭吸附处理焦化废水的性能,为褐煤活性炭用于废水处理提供理论依据和技术指导。以河南某气化厂的焦化废水为吸附原水,进行褐煤活性炭对酚吸附性能的静态和动态实验。静态实验表明,褐煤活性炭对酚的吸附性能符合弗兰德里希(Freundlich)吸附方程式。在室温条件下,对于150 mL焦化废水,当活性炭的用量为10 g,吸附反应时间为1 h,酚的去除率可达92%以上。动态实验研究表明,当进水酚浓度为3 800 mg/L,吸附1.5 h,活性炭的吸附容量可达21.38 mg/g。水处理的实验研究表明,利用褐煤制备的活性炭,对焦化废水具有良好的处理效果。  相似文献   

2.
Fenton氧化-活性炭吸附耦合处理焦化废水生化尾水的研究   总被引:4,自引:0,他引:4  
研究了Fenton氧化、活性炭吸附、Fenton氧化一活性炭吸附等方法,对焦化废水生化尾水的处理效果,分析了Fenton氧化一活性炭吸附法处理焦化废水生化尾水的工艺条件。结果表明,Fenton氧化与活性炭吸附耦合处理焦化废水生化尾水的最优条件是:H2O2投加量为5mL/L,FeSO4·7H2O投加量为200mg/L,活性炭投加量为2g/L,反应pH=4.0,反应时间为20min。在此条件下,COD去除率可达82.6%,出水水质符合《污水综合排放标准》(GB8978--1996)一级标准。  相似文献   

3.
以焦化废水好氧池出水为研究对象,采用微波诱导载铜活性炭深度处理焦化废水。在单因素实验的基础上,以焦化废水COD去除率为评价指标,微波功率、微波时间、催化剂用量为考察因素,采用Box-Behnken响应曲面法考察各影响因素的单独作用及交互作用对焦化废水COD去除率的影响,建立数学模型。通过响应曲面分析可知,微波功率、时间、催化剂用量以及微波功率与微波时间的交互作用对COD去除率均有显著影响,模型预测最佳工艺条件为微波功率550 W,微波时间5 min,催化剂用量20 g·L-1,COD去除率为84.23%,在该条件下通过两次验证实验得出结果平均值为82.63%,预测值与测定值相对误差为1.90%,两者具有较好的一致性。  相似文献   

4.
采用臭氧/活性炭联合工艺对焦化废水A2/O出水进行深度处理。考察了溶液初始pH值、臭氧投加量、活性炭投加量及使用次数、反应时间对焦化废水处理效果的影响。实验结果表明,活性炭的使用可显著提高臭氧对焦化废水COD的去除率,在溶液初始pH值为10.25、臭氧投加量为7.5 mg/min、活性炭投加量50 g/L、反应时间为30 min条件下,COD去除率达到73.51%。同时,在活性炭重复使用10次时,COD去除率为70.85%,仅降低了2.66%。  相似文献   

5.
新型活性炭固定化产品的制备及其处理焦化废水的特性   总被引:1,自引:0,他引:1  
为解决优势菌种工程应用,研究不同固定化方法、载体和结构的固定化产品对焦化废水的降解特性。用活性炭粉末吸附菌种后,与聚乙烯醇和海藻酸钠混合制备了新型固定化球;用聚乙烯醇和海藻酸钠包埋吸附菌种的活性炭纤维毡,与立体弹性塑料填料连用,制备出3种不同形状的活性炭纤维膜片固定化产品复合填料。将游离菌和制备的4种活性炭固定化产品投入A/A/O工艺系统平行实验,考察处理焦化废水的效果。结果表明,活性炭纤维膜片固定化产品复合填料对焦化废水的降解能力优于其他固定化产品:缺氧池出水硝酸盐氮和亚硝酸盐氮浓度分别稳定在1.96 mg/L和0.49 mg/L,未产生氮的累积现象,COD去除率可达到60.92%。好氧池COD和氨氮降解效率分别为78.83%和85.52%,苯酚、氰化物降解效率均为97%以上。  相似文献   

6.
活性炭吸附-Fenton氧化处理高盐有机废水   总被引:2,自引:0,他引:2  
采用活性炭吸附-Fenton氧化耦合工艺处理高盐度难降解有机废水的性能。考察了不同工艺参数对活性炭吸附及Fenton氧化对高盐有机废水处理效率的影响。结果表明,采用活性炭单独处理时,在pH=6.0,活性炭投加量为9.0g/L,吸附时间为60 min条件下,COD去除率最大,达到47.5%。活性炭吸附处理后,废水再采用Fenton氧化处理,在FeSO4.7H2O投加量为3.0 g/L,H2O2投加量为4.7 g/L,反应时间为30 min条件下,COD去除率最大,达到84.4%。整体而言,经过活性炭吸附和Fenton氧化处理后,废水COD由初始浓度13 650 mg/L降至560 mg/L,去除率达到95.9%。活性炭吸附-Fenton氧化耦合工艺适合高盐度难降解有机废水的处理。  相似文献   

7.
A/O/O生物流化床处理焦化废水中酚类组成及降解特性分析   总被引:3,自引:1,他引:3  
为了研究实际焦化废水处理工程中酚类污染物的组成及降解特性,实验中采用HLB小柱固相萃取水样,GC-MS选择性离子扫描方法检测环境中15种酚类污染物,除苯酚的平均回收率为72.6%以外,其他14种酚类的回收率在87.6%~102.3%之间,平行测定标准偏差均小于7.62%,能够满足环境中酚类污染物测定的需要。实验结果表明,焦化废水中含有高浓度的苯酚、甲基酚和萘酚,同时存在微量的氯酚和硝基酚。在生物流化床A/O/O组合工艺处理焦化废水的过程中,厌氧阶段高浓度酚类(苯酚、甲基酚和萘酚)、氯酚类去除率分别为29.3%和31.6%;一级好氧阶段分别为99%和92.4%;二级好氧阶段分别达到89%和6%;最终出水中酚类污染物浓度0.045 mg/L,满足钢铁行业废水达标排放要求。  相似文献   

8.
选择YT-1000型活性炭纤维(ACF)作为催化剂,考察ACF与O3协同作用催化降解水溶液中4-氯酚的最佳反应条件,并将该条件应用于焦化废水生物处理尾水中难降解有机污染物的催化氧化。ACF表面具有丰富的微孔结构,对4-氯酚有良好的吸附作用,在动力学上提高了其与O3反应的起始浓度,并且在ACF表面含氧、含氮等基团的催化作用下发生氧化反应,1 L浓度为100 mg/L的4-氯酚水样中投加2 g ACF反应6 min时,吸附作用对TOC的去除率为43.4%,而ACF协同O3作用时的TOC去除率提高到72.5%,协同增效作用为67.1%;在选定的反应条件下,ACF协同O3降解焦化废水生物处理尾水,60 min时的TOC与色度的去除率分别达到56.8%和96.3%。上述研究过程证明了吸附作用与催化作用的协同能有效降解生物过程不能降解的焦化废水中惰性有机污染物。  相似文献   

9.
混凝-IBAC深度处理焦化废水的试验研究   总被引:3,自引:1,他引:3  
以哈尔滨某气化厂焦化废水为目标,探讨混凝-固定化生物活性炭(IBAC)工艺对哈尔滨气化厂焦化废水进行深度处理的净化效能及其可行性.采用筛选、驯化的脱酚菌,对活性炭(GAC)进行固定,使之形成固定化生物活性炭.当该工艺进水COD<800 mg/L时,出水COD在100 mg/L以下,平均去除率在80%左右;当进水总酚在200 mg/L以下时,出水的总酚含量基本在20 mg/L以下;当进水氨氮浓度在75 mg/L以下时,出水氨氮浓度在25 mg/L以下.焦化废水中各污染物指标经混凝-IBAC工艺深度处理后可达污水综合排放标准(GB 8978-1996)的二级标准.  相似文献   

10.
采用负载经驯化后微生物的活性炭深度处理实际印染废水,研究生物活性炭系统中存在的生物相及其降解有机污染物的作用,并表征了处理后印染废水的生物毒性。结果表明,生物相中含有草履虫、轮虫及钟虫等原生动物。随着运行次数的增加,活性炭反应器在运行5次后出水的COD、NH3-N及色度去除率骤降,但是生物活性炭处理后出水的COD、NH3-N及色度去除率缓慢下降。生物活性炭能很好地降解印染废水中的苯酚类和稠环芳烃污染物。本研究中生物活性炭反应器对氨氮和COD的去除符合一级动力学方程,去除动力学常数分别为1.02和0.96。经过生物活性炭的处理可以将印染废水的生物毒性降到适于小球藻生长的水平。  相似文献   

11.
以某焦化厂生化出水为研究对象,考寨了金属负载活性炭(简称负载炭)和Fenton氧化预处理等强化活性炭工艺对总氰化物(TCN)的去除效果.在TCN批式实验中,对负载炭的金属离子种类和固定方式进行了考察,同时研究了接触时间、DO对游离氰(KCN配水)、络合氰(K3Fe(CN)6配水)及焦化厂生化出水中TCN的去除效果.结果表明,负载金属离子可以有效提高活性炭对TCN的去除量,KI固定后的载铜活性炭对TCN的去除更有效.吸附作用在活性炭去除TCN过程中起着主要作用,同时TCN在活性炭表面也发生缓慢的催化氧化反应.在穿透实验中,采用了小型炭柱穿透和微型快速穿透实验方法,得到的TCN穿透曲线基本相同.含不同比例原煤炭和负载炭的小型炭柱处理经Fenton氧化预处理的焦化厂生化出水时,在18 d的启动阶段后形成生物活性炭柱,其出水能长期达到<城镇污水处理厂污染物排放标准>(GB 18918-2002)规定的要求.载铜话性炭可以提高活性炭工艺对TCN的去除能力,确保处理全程(57 d)出水的TCN达标.  相似文献   

12.
选择YT-1000型活性炭纤维(ACF)作为催化剂,考察ACF与O3协同作用催化降解水溶液中4-氯酚的最佳反应条件,并将该条件应用于焦化废水生物处理尾水中难降解有机污染物的催化氧化。ACF表面具有丰富的微孔结构,对4-氯酚有良好的吸附作用,在动力学上提高了其与O3反应的起始浓度,并且在ACF表面含氧、含氮等基团的催化作用下发生氧化反应,1 L浓度为100 mg/L的4-氯酚水样中投加2 g ACF反应6 min时,吸附作用对TOC的去除率为43.4%,而ACF协同O3作用时的TOC去除率提高到72.5%,协同增效作用为67.1%;在选定的反应条件下,ACF协同O3降解焦化废水生物处理尾水,60 min时的TOC与色度的去除率分别达到56.8%和96.3%。上述研究过程证明了吸附作用与催化作用的协同能有效降解生物过程不能降解的焦化废水中惰性有机污染物。  相似文献   

13.
针对焦化废水生物处理出水中继续存在多种有机污染物而影响达标及存在安全隐患的现状,基于废水中有机物的物理化学特性,构建了氧化/吸附/混凝的深度处理过程。在NaC lO投加量为40 mg/L,AC投加量为500 mg/L,PFS投加量为300 mg/L,反应时间为0.5 h,以及pH为7.0的最佳条件下,先氧化后吸附混凝,该过程可以实现COD去除率为75%以上,色度去除率80%以上,处理后的水样其COD值与色度值分别下降到60 mg/L及20倍以下;通过GC/MS方法分析处理前后水样中的有机物组分,发现水样中大部分单环芳香族化合物和多环芳香族化合物,部分含氮杂环化学物、有机氯化物以及溴化物被去除,但是,长链烷烃和部分芳香烃继续保留。研究结果证明了氧化/吸附/混凝协同工艺的效果与焦化废水生物出水中有机污染物的分子结构、存在形态形成构效关系,催化作用与氧化作用的协同是获得高效去除率的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号