首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial variation in reproductive output from different populations within a region could have important consequences for recruitment, and cascading effects on populations and communities of marine species, but is rarely examined over meso-scales (i.e., tens to hundreds of kilometers). In this study, reproduction in the dominant mid-intertidal mussel, Mytilus californianus, was examined from sites spanning Point Conception, California over a 6-month period (March–August 2000). There was a dramatic geographic pattern in the relationship between size and potential reproductive output that was qualitatively similar across all 6 months sampled. Increases in allocation to reproductive tissue with increasing body size occurred at all sites, but the slope nearly doubled at sites south of Point Conception compared to northern sites. The spatial variation in size-specific reproductive output, coupled with additional spatial gradients in mussel density and size distributions, combined to increase total reproductive output by over eightfold at southern relative to northern sites. This study highlights the need to explicitly examine spatial patterns of reproductive output at these meso-scales, in order to better understand connectivity and source–sink dynamics in marine systems.  相似文献   

2.
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.  相似文献   

3.
The Role of Behavior in Recent Avian Extinctions and Endangerments   总被引:4,自引:0,他引:4  
Abstract: Understanding patterns of differential extinction and predicting the relative risks of extinction among extant species are among the most important problems in conservation biology. Although recent studies reveal that behavior can be a critical component in many species' extinctions or endangerments, current approaches to the problem of predicting extinction patterns largely ignore behavior. I reviewed how behavior can affect population persistence and then used recent avian extinctions and endangerments to illustrate behaviors relevant to extinction risk. Behaviors that affect population persistence can be grouped as aggregation, interspecific responses, dispersal, habitat selection, intraspecific behavior, and maladaptive behavior. Behavior that can affect extinction risk is not limited to birds; for example, in many taxonomic groups (vertebrate and invertebrate) there is evidence of socially facilitated reproduction in colonial species, Allee effects on reproductive success and survival, behavioral regulation of population size, and conspecific attraction to breeding sites. Incorporating specific behaviors into models predicting extinction probabilities and patterns should improve their predictions.  相似文献   

4.
Moeller DA 《Ecology》2006,87(6):1510-1522
Reproductive assurance is often invoked as an explanation for the evolution of self-fertilization in plants. However, key aspects of this hypothesis have received little empirical support. In this study, I use geographic surveys of pollinator communities along with functional studies of floral trait variation to examine the role of pollination ecology in mating system differentiation among populations and subspecies of the annual plant Clarkia xantiana. A greenhouse experiment involving 30 populations from throughout the species' range indicated that variation in two floral traits, herkogamy and protandry, was closely related to levels of autofertility and that trait variation was partitioned mainly among populations. Emasculation experiments in the field showed that autonomous selfing confers reproductive assurance by elevating fruit and seed production. Surveys of pollinator communities across the geographic range of the species revealed that bee pollinator abundance and community composition differed dramatically between populations of the outcrossing subspecies xantiana and the selfing subspecies parviflora despite their close proximity. Specialist bee pollinators of Clarkia were absent from selfing populations, but they were the most frequent visitors to outcrossing populations. Moreover, within the outcrossing subspecies xantiana, there was a close correspondence between specialist abundance and population differentiation in herkogamy, a key mating system trait. This spatial covariation arose, in part, because geographically peripheral populations had reduced herkogamy, higher autofertility, and lower pollinator abundance compared to central populations of xantiana. Finally, I detected strong spatial structure to bee communities both across the range of the species and within the outcrossing subspecies. In both cases, spatial structure was stronger for specialist bees compared to generalist bees, and pollinator communities varied in parallel with population variation in herkogamy. These results provide evidence that mating system differentiation parallels spatial variation in pollinator abundance and community composition at both broad and more restricted spatial scales, consistent with the hypothesis that pollinator abundance and reproductive assurance are important drivers of plant mating system evolution.  相似文献   

5.
Abstract:  We identified six approaches to diagnosing causes of population declines and illustrate the use of the most general one ("multiple competing hypotheses") to determine which of three candidate limiting factors—food availability, nesting site availability, and nest predation—were responsible for the exceptionally poor reproduction of Marbled Murrelets (  Brachyramphus marmoratus ) in central California. We predicted how six attributes of murrelet demography, behavior, and physiology should be affected by the candidate limiting factors and tested predictions with field data collected over 2 years. The average proportion of breeders, as estimated with radiotelemetry, was low (0.31) and varied significantly between years: 0.11 in 2000 and 0.50 in 2001. Murrelets spent significantly more time foraging in 2000 than in 2001, suggesting that low food availability limited breeding in 2000. In 2001, 50% of radio-marked murrelets nested and 67% of females were in breeding condition, suggesting that enough nest sites existed for much of the population to breed. However, rates of nest failure and nest predation were high (0.84 and 0.67–0.81, respectively) and few young were produced, even when a relatively high proportion of murrelets bred. Thus, we suggest that reproduction of Marbled Murrelets in central California is limited by food availability in some years and by nest predation in others, but apparently is not limited by availability of nesting sites. The multiple-competing-hypotheses approach provides a rigorous framework for identifying causes of population declines because it integrates multiple types of data sets and can incorporate elements of other commonly used approaches.  相似文献   

6.
Prolonged reproductive consequences of short-term biomass loss in seaweeds   总被引:2,自引:0,他引:2  
M. Graham 《Marine Biology》2002,140(5):901-911
This study describes the reproductive collapse of a large giant-kelp forest (Macrocystis pyrifera; Point Loma, southern California, USA) and the dynamics of its subsequent recovery. High-frequency sampling within a 100-m2 area, combined with a 3-year reproduction time-series from four other sites over a broad depth gradient, were used to (1) quantify temporal and spatial patterns of change in size and fertility of adult sporophytes, and (2) examine physical and biological factors that regulate such changes. Giant-kelp sporophytes have the potential for continuous reproduction, yet from March to November 1999, sporophytes at the high-frequency sampling site went from completely sloughing (actively releasing zoospores) to completely sterile, despite a relatively constant biomass of sporogenous tissues. This shift to sterility was rapid, with 65% of sporophytes ceasing to slough during late-June/early-July 1999, and did not co-occur with stressful physical conditions (i.e. high temperatures, low nutrients, or high wave intensity). Instead, the cessation of reproductive output corresponded to an episodic, sublethal amphipod-grazing event that stripped blade biomass from all sporophytes. Although the grazer infestation affected the entire kelp forest, peaks in grazer abundance were localized, moving through the population during late spring and summer, and causing patchiness in sporophyte size and fertility on a scale of meters. The reproductive collapse was size-dependent, since smaller sporophytes were the first to cease sloughing. The grazing event waned in the fall and sporophyte vegetative growth rapidly recovered lost biomass (within ~2 months). Such growth, however, occurred at the expense of the production of sporogenous tissue and caused a prolonged period (>4 months) of decreased reproductive output. These results suggest a trade-off between sporophyte growth and reproduction, allowing short-term disturbances to have lasting impacts on the reproductive output of giant-kelp populations.  相似文献   

7.
Many studies have examined latitudinal differences in reproduction of marine invertebrates, but few have measured variation at small to intermediate scales (kilometres to hundreds of kilometres), which may confound comparisons across broader geographic regions. Here, we examined variation in the reproductive biology of a little-studied species of burrowing ghost shrimp (Trypaea australiensis) at spatial scales ranging from km (between sites within estuaries) to 100s of km (among estuaries), over a 2-year period in south-eastern Australia. Sex ratios of populations were consistently biased towards females through time and space. Although reproduction started in summer months across all spatial scales, there was a pattern of earlier spawning from southern to northern estuaries. Integration of results from previous studies of T. australiensis supported a similar pattern of earlier breeding from high to low latitudes. Fecundity of shrimp increased linearly with female size, but the relationship varied inconsistently across the different spatial scales. Similarly, sizes at maturity varied from small to intermediate scales and observed patterns were not consistent with general predictions e.g. shrimp were smaller and ovigerous at smaller sizes at sites in the southern-most estuary, compared to estuaries further north. We found no differences in the sizes of embryos across the different spatial scales, but confirm that T. australiensis employs a strategy of high fecundity and small embryo size compared to other thalassinidean shrimp. Our results suggest that factors at smaller scales (e.g. food availability) may be important in affecting reproductive dynamics of T. australiensis, but further research is needed in testing hypotheses about patterns observed here. A lack of similar studies on other marine organisms remains an impediment to understanding life-history strategies and the sustainable management and conservation of populations.  相似文献   

8.
Angert AL 《Ecology》2006,87(8):2014-2025
Every species occupies a limited geographic area, but how spatiotemporal environmental variation affects individual and population fitness to create range limits is not well understood. Because range boundaries arise where, on average, populations are more likely to go extinct than to persist, range limits are an inherently population-level problem for which a demographic framework is useful. In this study, I compare demographic parameters and population dynamics between central and marginal populations of monkeyflowers, Mimulus cardinalis and M. lewisii, along an elevation gradient spanning both species' ranges. Central and marginal populations of both species differed in survival and fecundity. For M. lewisii, these components of fitness were higher in central than in marginal populations, but for M. cardinalis the converse was true. To assess spatiotemporal variation in population dynamics, I used transition matrix models to estimate asymptotic population growth rates (lambda) and found that population growth rates of M. lewisii were highest at the range center and reduced at the range margin. Population growth rates of M. cardinalis were highest at the range margin and greatly reduced at the range center. Life table response analysis decomposed spatiotemporal variation in lambda into contributions from each transition between life stages, finding that transitions from large nonreproductive and reproductive plants to the seed class and stasis in the reproductive class made the largest contributions to spatial differences in lambda. These transitions had only low to moderate sensitivities, indicating that differences in projected population growth rates resulted mainly from observed differences in transition matrix parameters and their underlying vital rates.  相似文献   

9.
Environmental-stress-mediated geographic variation in reproductive parameters has been little studied in natural vertebrate populations outside the context of climatic variation. Based on life-history theory, an increase in the degree of environmental stress experienced by a population should lead to (1) a shift in reproductive allocation from fecundity to offspring quality, (2) stronger trade-offs between reproductive parameters, and (3) changes in the relationship between female phenotype and maternal investment. To test these predictions, we investigated geographic variation in maternal investment of moor frogs (Rana arvalis) in relation to breeding site acidity (pH 4-8). We found that mean egg size increased and clutch size and total reproductive output (TRO) decreased with increasing acidity among 19 Swedish moor frog populations. Tests for variation and co-variation in maternal investment and female size and age in 233 females from a subset of four acid origin (AO) and four neutral origin (NO) populations revealed that clutch size and TRO increased with female size in both acid and neutral environments. However, in AO populations, egg size also increased with female size, and clutch size and TRO with female age, whereas in NO populations, egg size increased with female age. The strength of the egg-size-clutch-size tradeoff tended to be stronger in AO than in NO females as expected if the former experience stronger environmental constraints. All in all, these results suggest that environmental acidification selects for investment in larger eggs at a cost to fecundity, imposes negative effects on reproductive output, and alters the relationship between female phenotype and maternal investment.  相似文献   

10.
To establish a complete understanding of reproductive variability, larval supply and ultimately population demographics of a species it is important to determine reproduction across a broad spectrum of environmental conditions. This study quantified sexual reproduction of the brooding, gonochoristic sponge Rhopaloeides odorabile from populations across the shelf reefs of the central Great Barrier Reef (GBR). Histological sections of reproductive sponges collected at increasing distances from the coast were used to determine if numbers of reproductive sponges, reproductive output (using a reproductive output index), size at sexual maturity, and sex ratios varied according to their location (distance) from the coastline and therefore from influences of terrigenous/riverine discharge. Significantly higher proportions of reproductive sponges occurred with increasing distance from the coast. The proportion of all reproductive sponges (both male and female) on offshore reefs ranged from 77 to 90%, during November and December, the peak reproductive months of this sponge, compared to 47 to 50% for sponges occurring on coastal reefs. Levels of female reproduction increased with increasing distance from the coastline on two levels. First, oocytes from offshore sponges were significantly larger than oocytes from coastal sponges. Second, sponges from offshore reefs showed a reproductive index (proportions of oocytes, embryos and larvae mm−2) approximately 15 times higher than coastal reef sponges. Therefore, both numbers of oocytes, embryos and larvae in conjunction with larger oocytes contribute to a higher reproductive output index for offshore sponges. The production of spermatic cysts in males was consistent across the GBR. Sex ratios for coastal reef sponges showed a male bias while offshore sponges showed approximate equal sex ratios. The effect of terrigenous riverine input from coastal fluvial plains to the inner GBR is well established and is likely to contribute to the lower levels of reproduction associated with female sponges inhabiting coastal reefs of the central GBR.  相似文献   

11.
Allozyme electrophoresis was used to characterize genetic variation within and among natural populations of the red sea urchin Strongylocentrotus franciscanus. In 1995 to 1996, adult urchins were sampled from twelve geographically separated populations, seven from northern California and five from southern California (including Santa Rosa Island). Significant population heterogeneity in allelic frequencies was observed at five of six polymorphic loci. No geographic pattern of differentiation was evident; neighboring populations were often more genetically differentiated than distant populations. Northern and southern populations were not consistently distinguishable at any of the six loci. In order to assess within-population genetic variation and patterns of recruitment, large samples were collected from several northern California populations in 1996 and 1997, and were divided into three size classes, roughly representing large adults (>60 mm), medium-sized individuals (31 to 60 mm, “subadults”) and individuals <2 yr of age (≤30 mm test diam, referred to as “recruits”). Comparisons of allelic counts revealed significant spatial and temporal differentiation among size-stratified population samples. Recruit samples differed significantly from adult samples collected at the same locale, and showed extensive between-year variation. Genetic differentiation among recruit samples was much higher in 1997 than in 1996. Between-year differences within populations were always greater for recruits than for adults. Potential explanations for the differentiation of recruit samples include pre- and post-settlement natural selection and high interfamily variance in reproductive success or “sweepstakes” recruitment. Unless recruit differentiation can be attributed to an improbable combination of strong and spatially diverse selection, such differentiation across northern California populations indicates that the larval pool is not well mixed geographically (even on spatial scales <20 km), despite long planktonic larval duration. Received: 6 July 1999 / Accepted: 25 January 2000  相似文献   

12.
Abstract:  Geographically peripheral populations of widespread species are often the focus of conservation because they are locally rare within political jurisdictions. Yet the ecology and genetics of these populations are rarely evaluated in a broader geographic context. Most expectations concerning the ecology and evolution of peripheral populations derive from the abundant-center model, which predicts that peripheral populations should be less frequent, smaller, less dense, and have a lower reproductive rate than central populations. We tested these predictions and in doing so evaluated the conservation value of peripheral populations for the clonal shrub Vaccinium stamineum L. (Ericaceae, deerberry), which is listed as threatened in Canada. Based on 51 populations sampled from the center to the northern range limits over 2 years, population frequency and size declined toward the range limit, but ramet density increased. Sexual reproductive output varied widely among populations and between years, with many populations producing very few seeds, but did not decline toward range margins. In fact seed mass increased steadily toward range limit, and this was associated with faster germination and seedling growth, which may be adaptive in seasonal northern environments. Our results did not support the prediction that clonal reproduction is more prevalent in peripheral populations or that it contributed antagonistically to the wide variation in seed production. Peripheral populations of V. stamineum are as productive as central populations and may be locally adapted to northern environments. This emphasizes the importance of a broad geographical perspective for evaluating the ecology, evolution, and conservation of peripheral populations.  相似文献   

13.
Samis KE  Eckert CG 《Ecology》2007,88(7):1747-1758
It is widely accepted that species are most abundant at the center of their geographic ranges and become progressively rarer toward range limits. Although the abundant center model (ACM) has rarely been tested with range-wide surveys, it influences much thinking about the ecology and evolution of species' distributions. We tested ACM predictions using two unrelated but ecologically similar plants, Camissonia cheiranthifolia and Abronia umbellata. We intensively sampled both throughout their one-dimensional distributions within the Pacific coastal dunes of North America, from northern Baja California, Mexico, to southern Oregon, USA. Data from > 1100 herbarium specimens indicated that these limits have been stable for at least the last 100 years. Range-wide field surveys detected C. cheiranthifolia at 87% of 124 sites and A. umbellata at 54% of 113 sites, but site occupancy did not decline significantly toward range limits for either species. Permutation analysis did not detect a significant fit of geographical variation in local density to the ACM. Mean density did not correlate negatively with mean individual performance (plant size or number of seeds/plant), probably because both species occur at low densities. Although size and seeds per plant varied widely, central populations tended to have the highest values for size only. For C. cheiranthifolia, we observed asymmetry in the pattern of variation between the northern and southern halves of the range consistent with the long-standing prediction that range limits are imposed by different ecological factors in different parts of the geographical distribution. However, these asymmetries were difficult to interpret and likely reflect evolutionary differentiation as well as plastic responses to ecological variation. Both density and seeds per plant contributed to variation in seed production per unit area. In C. cheiranthifolia only, sites with highest seed production tended to occur at the range center, as predicted by the ACM and assumed by theory proposing that range limits evolve via antagonism between natural selection and gene flow.  相似文献   

14.
P. O. Yund  A. Stires 《Marine Biology》2002,141(5):955-963
Recent interest in the dynamics of marine invertebrate populations has focused largely on taxa with an open population structure. However, in many colonial taxa with limited larval dispersal, settlers may be locally derived. Consequently, dynamics may vary among sites that are separated by relatively short distances. This study explored spatial variation in temporal dynamics of colonial ascidians (Botryllus schlosseri Pallas) inhabiting five sites distributed along a ≈ 17-km temperature and phytoplankton gradient in the Damariscotta River estuary, Maine, USA. Settlement and population densities and sexual reproductive status were assayed throughout the summer seasons of 1996 and 1997. Sexual reproduction and larval settlement commenced earlier in the summer in up-river populations, which subsequently underwent a seasonal population explosion that was much smalier in down-river populations. Two peaks in settlement density up-river (in early July and early September) suggest that colonies there may have completed two sexual generations, in contrast to a single generation at down-river sites. Similar spatial variation is expected among populations of other taxa with limited larval dispersal when they are distributed across environmental gradients. Published online: 18 September 2002  相似文献   

15.
We used microsatellite genetic markers to investigate adult population structure and the formation of a new year-class in Sebastes mystinus (blue rockfish). Since S. mystinus may live as long as 45 years and reach reproductive age at approximately 5 years, the adult population may contain as many as eight generations of reproductive adults. We investigated whether the juveniles of the 2000 year-class and the adult population were genetically homogeneous along the California coast. We sampled approximately 100 juveniles from three sites, two sites along the Monterey Peninsula (Carmel and Monterey) in central California and one at Fort Ross in northern California, and approximately 50 adult S. mystinus from five sites throughout the population center. The adult sampling spanned approximately 700 km from the northern Channel Islands to Fort Bragg. The juveniles showed significant heterogeneity in allele frequencies among distant locations and genetic homogeneity among adjacent locations. In contrast, the adults showed genetic homogeneity over large distances (San Miguel Island to Fort Bragg), indicating little limitation of gene flow in this region. Allele frequencies of juveniles differed from adult samples and in some cases reduced genetic diversity indicative of sweepstakes recruitment (small sample of the adult reproductive potential). The genetic structure of the 2000 year-class suggests that despite a genetically homogenous adult population, settled juveniles can be genetically heterogeneous along the California coast. The results also suggest that the adults, with several year-classes, are capable of maintaining a panmictic population despite the genetic distinctiveness of individual year-classes.  相似文献   

16.
Abstract: Although there has been a call for the integration of behavioral ecology and conservation biology, there are few tools currently available to achieve this integration. Explicitly including information about behavioral strategies in population viability analyses may enhance the ability of conservation biologists to understand and estimate patterns of extinction risk. Nevertheless, most behavioral‐based PVA approaches require detailed individual‐based data that are rarely available for imperiled species. We present a mechanistic approach that incorporates spatial and demographic consequences of behavioral strategies into population models used for conservation. We developed a stage‐structured matrix model that includes the costs and benefits of movement associated with 2 habitat‐selection strategies (philopatry and direct assessment). Using a life table for California sea lions (Zalophus californianus), we explored the sensitivity of model predictions to the inclusion of these behavioral parameters. Including behavioral information dramatically changed predicted population sizes, model dynamics, and the expected distribution of individuals among sites. Estimated population sizes projected in 100 years diverged up to 1 order of magnitude among scenarios that assumed different movement behavior. Scenarios also exhibited different model dynamics that ranged from stable equilibria to cycles or extinction. These results suggest that inclusion of behavioral data in viability models may improve estimates of extinction risk for imperiled species. Our approach provides a simple method for incorporating spatial and demographic consequences of behavioral strategies into population models and may be easily extended to other species and behaviors to understand the mechanisms of population dynamics for imperiled populations.  相似文献   

17.
Abstract: The endangered grassland daisy Rutidosis leptorrhynchoides has been subject to severe habitat destruction and fragmentation over the past century. Using allozyme markers, we examined the genetic diversity and structure of 16 fragmented populations. The species had high genetic variation compared to other plant species, and both polymorphism and allelic richness showed strong positive relationships with log reproductive population size, reflecting a loss of rare alleles (frequency of q < 0.1) in smaller populations. Fixation coefficients were positively related to size, due either to a lack of rare homozygotes in small populations or to Wahlund effects (owing to spatial genetic structure) in large ones. Neither gene diversity nor heterozygosity was related to population size, and other population parameters such as density, spatial contagion, and isolation had no apparent effect on genetic variation. Genetic divergence among populations was low , despite a large north-to-south break in the species' current distribution. To preserve maximum genetic variation, conservation strategies should aim to maintain the five populations larger than 5000 reproductive plants, all of which occur in the north of the range, as well as the largest southern population of 626 plants at Truganina. Only one of these is currently under formal protection. High heterozygosity in smaller populations suggests that they are unlikely to be suffering from inbreeding depression and so are also valuable for conservation. Erosion of allelic richness at self-incompatibility loci, however, may limit the reproductive capacity of populations numbering less than 20 flowering plants.  相似文献   

18.
The social organization of gregarious lemurs significantly deviates from predictions of the socioecological model, as they form small groups in which the number of males approximately equals the number of females. This study uses models of reproductive skew theory as a new approach to explain this unusual group composition, in particular the high number of males, in a representative of these lemurs, the redfronted lemur (Eulemur fulvus rufus). We tested two central predictions of “concession” models of reproductive skew theory, which assume that subordinates may be allowed limited reproduction by dominant group members as an incentive to remain in the group, thereby increasing the group’s overall productivity. Accordingly, relatives are predicted to receive less reproduction than non-relatives, and the overall amount of reproductive concessions given to subordinates is predicted to increase as the number of subordinates increases. In addition, we tested whether the number of females in a group, a variable not previously incorporated in reproductive skew theory, affected reproductive skew among males. Using microsatellite analyses of tissue DNA, we determined paternities of 49 offspring born into our study population in Kirindy forest (western Madagascar) since 1996 to determine patterns of male reproductive skew to test these predictions. Our analyses revealed remarkable reproductive skew, with 71% of all infants being sired by dominant males, but both predictions of reproductive skew models could not be supported. Instead, the number of females best predicted the apportionment of reproduction among the males in this species, suggesting that current reproductive skew models need to incorporate this factor to predict reproductive partitioning among male primates and perhaps other group-living mammals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Both Peter M. Kappeler and Markus Port contributed equally to this paper.  相似文献   

19.
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.  相似文献   

20.
Moeller DA  Geber MA  Eckhart VM  Tiffin P 《Ecology》2012,93(5):1036-1048
Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号