首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
利用MIKE21 FM建立了钦州湾海域二维潮流模型,通过验证,结果与实测资料吻合良好,在此模型基础上分别选取企沙镇-乌雷村连线和21.75°N作为钦州湾和茅尾海的湾口断面,计算了钦州湾和茅尾海的纳潮量;在潮流模型的基础上耦合保守物质的对流扩散模型,分别对有无径流条件下钦州湾和茅尾海的水交换能力进行数值模拟研究。结果表明:钦州湾纳潮量最大为17.1×108m3,最小为1.89×108m3,平均9.20×108m3;茅尾海纳潮量最大为5.5×108m3,最小为0.62×108m3,平均2.96×108m3;有径流时钦州湾水体半交换时间为17.5 d,茅尾海半交换时间为9.3 d;无径流时钦州湾水体半交换时间为60.8 d,茅尾海半交换时间为45.4 d。  相似文献   

2.
普兰店湾潮流场数值模拟   总被引:1,自引:1,他引:1  
针对近年来我国近海海洋环境影响评价的需要,运用具有移动边界的潮波动力学有限 差分模型,模拟了普兰店湾 潮 流场,复演了该湾的潮流结构和时空变化过程。验证结果表明,模拟计算的流速平均差为-1.52cm/s,流向平无差为-2.5 度,完全符合潮流预报的精度要求。  相似文献   

3.
钦州湾水体中磺胺类抗生素污染特征与生态风险   总被引:1,自引:0,他引:1  
利用高效液相色谱-串联质谱(HPLC-MS/MS),研究了钦州湾近海及汇海河流磺胺类抗生素浓度和分布特征.结果表明:4种磺胺类抗生素(SAs)和甲氧苄氨嘧啶(TMP)在钦州湾近海及汇海河流均有不同程度的检出,其浓度范围为n.d.~12ng/L.其中,磺胺甲基异恶唑(SMX)在近海的检出率和平均浓度最高,分别为100%和4.1ng/L;其次为TMP(检出率87%,平均浓度1.0ng/L).与国内外其他水域相比,钦州湾磺胺类抗生素浓度处于较低水平.钦州湾近海抗生素浓度分布呈现以下趋势:茅尾海(8.4ng/L)>钦州外湾(1.9ng/L)>三娘湾(1.4ng/L).磺胺类抗生素在钦州湾的海水养殖区均呈现出较高的浓度水平,说明高密度水产养殖是钦州湾水体中抗生素的重要污染源.生态风险评价结果表明,钦州湾水体中残留的磺胺甲基异恶唑(SMX)对相应的敏感物种存在中等生态毒性风险,需引起相关部门的重视.  相似文献   

4.
为判别钦州湾海域水环境质量特征,采用多元统计分析方法对2008~2012年钦州湾13个站位的监测数据进行了因子分析及聚类分析。结果表明,2008~2012年间影响钦州湾水质的环境要素主要为DIN及PO4-P,其中约有24.1%的DIN监测数据及5.4%的PO4-P的监测数据显示钦州湾DIN及PO4-P含量超过国家三类水质标准限值,同时约有4.6%的Chl a监测值超过海水的富营养化阈值。对5 a的监测数据进行因子分析及聚类分析后,统计分析结果表明钦州湾水质主要受入海径流因素影响;钦州湾海域水质可划分为两大类:内湾水质受入海径流控制,影响其水质的环境要素为N、P营养盐;而外湾水质则受沿岸排污及毗邻外海水体交换的共同影响。综合各站位的因子得分,钦州湾湾口处水质最好,湾颈处次之,湾顶处水质最差。  相似文献   

5.
于2015年4月和9月在钦州湾海域进行了2个航次的环境调查,获取了表层海水温度、盐度、pH、DO、COD、Chl a、石油烃、营养盐和重金属等指标数据,应用主成分分析法研究该海湾水质状况,并探讨影响该海区水质的主要驱动因子。通过主成分分析从18项调查指标中筛选提取出前4个主成分,可以解释原始变量信息73.68%的结果。主成分综合得分分析表明,钦州湾2015年4月水质污染比9月严重,空间分布上由内湾向外湾水质污染呈递减趋势,茅尾海水质污染严重。河流输入、鱼虾贝类养殖、浮游植物消长及水动力过程是影响钦州湾水质时空变化的重要因素。相关分析表明,影响钦州湾水质污染的主要驱动因子是氮营养盐、盐度、pH、Cd和Zn。陆源输入和养殖活动是主要污染源,应加强钦江、茅岭江的水环境保护,科学规划内湾养殖规模,进而改善钦州湾水质状况。  相似文献   

6.
根据对环钦州湾区域的入海河流、直排海污染源及养殖废水无机氮入海通量的估算,2011年钦州湾无机氮入海通量约为7 655 t,其中入海河流无机氮入海通量占总量的96.4%,直排海污染源次之。入海无机氮占钦州湾无机氮总量的比重为36.7%,说明钦州湾已属中等强度人为影响海域。根据对钦州湾富营养化症状——叶绿素a含量的分析,钦州湾富营养化症状不明显,钦州湾整体的富营养化程度较低。因而仅以营养盐含量评价目标海域的富营养化程度,易失之偏颇,宜结合富营养化症状来判断目标海域的富营养化程度。  相似文献   

7.
2015年至2016年间,对钦州湾海域开展了四个航次调查研究,结合其它理化环境因子,对该海域尿素含量和浮游植物脲酶活性季节分布特征及影响因素以及尿素的来源和生物可利用性进行了初步探讨。结果表明,钦州湾表层水体中尿素分布呈现明显的由内湾向外湾递减的趋势,含量范围为0.24~5.14 μmol N/L,平均值夏季>春季>冬季>秋季,其中夏季尿素平均值为3.30 ±1.14 μmol N/L。浮游植物脲酶活性为0.15~2.60 μmol N/(L·h),冬季浮游植物脲酶活性最高,平均为0.91 ±0.55 μmol N/(L·h),其次是秋季和夏季,春季脲酶活性最低。不同季节尿素含量均≥1.00 μmol N/L,占溶解态有机氮(DON)的1.2%~63.0%,平均值为(15.6 ±14.2)%,表明尿素是钦州湾海域的重要氮源。钦州湾尿素含量和分布主要决定于陆源输入,尿素是DON的重要组成部分,故钦州湾DON具有较高的生物可利用性,为该海域浮游植物生长提供重要的氮源。  相似文献   

8.
钦州湾叶绿素a和初级生产力时空变化及其影响因素   总被引:7,自引:0,他引:7  
于2009年1—11月对广西钦州典型养殖海湾——钦州湾海域水体中叶绿素a(Chl-a)浓度和初级生产力进行了4个季节航次的调查,分析了该海湾Chl-a和初级生产力的时空变化特征并探讨其影响因素.结果表明,钦州湾表层海水Chl-a浓度周年变化在0.83~32.5 mg·m-3之间,平均为5.39 mg·m-3;Chl-a浓度季节性变化表现为夏季春季冬季秋季.初级生产力变化范围是92.3~1494.5 mg·m-2·d-1(以C计,下同),平均为425.1 mg·m-2·d-1;初级生产力季节变化特征呈现夏季冬季秋季春季.钦州湾Chl-a浓度和初级生产力在春、夏、冬季呈现内湾和三娘湾海区高、钦州港海区低的分布特征,秋季出现相反的特征.相关分析显示,钦州湾Chl-a与水温、盐度和氨氮之间存在密切的相关关系.总体来看,陆源输入的营养盐及贝类养殖活动是影响Chl-a和初级生产力时空变化的重要因素.  相似文献   

9.
钦州湾秋季营养盐分布特征及营养状态分析研究   总被引:1,自引:0,他引:1  
根据2010年9月对钦州湾海域的现场调查资料,分析了钦州湾表层海水中营养盐的分布特征及其富营养化。结果表明:该湾亚硝酸盐(N02-N),硝酸盐(NO,-N),铵盐(NH4-N),磷酸盐(PO4-P)和活性硅(SiO3-Si)平均含量及范围分别为0.032(0.006-0.059)mg/L,0.262(0.018-0.663)mg/L,0.076(0.032-0.120)mg/L,0.009(0.001~0.02)mg/L和1.213(0.191-4.078)mg/L。在空间分布上,各营养盐含量均呈现出湾内高,湾外低的分布趋势,体现出秋季陆地径流的主导控制作用。相关性分析表明,秋季营养盐的补充均以陆源输入供应为主,对整个海湾的营养水平起到了主导控制作用。根据营养状态指数评价模式计算结果显示,秋季钦州湾调查海区总体表现为中度营养水平。  相似文献   

10.
广西钦州湾营养状况季节分析与评价研究   总被引:2,自引:0,他引:2  
根据2009年1月、4月、8月和11月对钦州湾海域调查结果,分析并评价了该海域营养状况的季节变化。结果表明,钦州湾海域总溶解无机氮(DIN)含量范围在0.023 mg/L~1.750 mg/L,硅酸盐(SiO3-Si)含量范围在0.027 mg/L~3.900 mg/L,磷酸盐(PO4-P)含量范围在0.001 mg/L~0.158 mg/L。NO3-N是DIN的主要存在形式,占62%~78%。不同的营养盐季节分布有所差异。DIN季节分布表现为夏季春季秋季冬季;PO4-P季节分布为春季秋季冬季夏季;SiO3-Si季节变化为夏季秋季春季冬季。从营养结构看,与Justic'等提出的营养盐化学计量限制标准比较符合P限制条件,PO4-P可能成为浮游植物生长的潜在限制因子。按照营养状态指数值,钦州湾海域春季、夏季和秋季表层海水处于富营养化状态,钦州湾内湾富营养化程度高,一旦水文气象条件适宜,从春季到秋季该区域随时都会发生赤潮灾害的可能。  相似文献   

11.
钦州湾生态系统健康主要存在问题及保护对策   总被引:1,自引:0,他引:1  
近年来,海洋生态系统健康受到了社会的不断关注。本文基于钦州湾海洋生态系统健康评价的结果,利用近几年的数据资料,筛选出该海湾海洋生态系统健康存在的主要问题。从筛选结果来看,近年来钦州湾海洋生态系统所受的环境压力较大,生态系统出现了组织结构变简单、活力降低、出现病态症状等主要问题。为了进一步提高钦州湾生态系统健康状态,本文从流域整治、污染减排、减少扰动、生态建设、加强管理等方面提出保护和修复建议。  相似文献   

12.
分析了钦州湾及其入海河流表层沉积物中重金属(Cu、Zn、As、Pb和Cd)含量的分布特征,并采用潜在生态危害指数法对表层沉积物中重金属污染进行了潜在生态危害评价。结果表明:钦州湾及其入海河流表层沉积物中重金属Zn、As、Pb和Cd的含量均低于国家一类标准值,仅个别采样点Cu的含量高于国家一类标准值;重金属污染较重的区域包括茅尾海东部、钦州港附近海域及入海河流;钦州港两大工业园区和4条河流是其重金属的主要污染源;钦州湾及其入海河流表层沉积物中重金属潜在生态危害达到中度程度,其中Cd为主要污染物,应作为重点防预对象。  相似文献   

13.
通过2006年-2010年N、P、Si数据分析广西钦州湾海域N、P、Si的变化趋势、富营养化状况以及限制因子。分析表明:钦州外湾DIN、DIP、SiO3-Si含量呈波浪形变化并有所下降,钦州外湾2006年-2010年均为贫营养,外湾海水水质良好。茅尾海DIN值含量较高,海域受到N的影响。茅尾海2006年-2010年为轻度~中度富营养。茅尾海属于磷中等限制富营养,磷酸盐仅表现为相对不足,仍然有爆发赤潮的危险。控制茅尾海富营养化的关键在于控制磷的入海量。  相似文献   

14.
利用GC-ECD测定了钦州湾沉积物中17种有机氯农药的含量,并对其组分分布和来源进行了分析。结果表明,样品中有机氯农药的总量为1.50~129ng/g,滴滴涕(DDTs)浓度为0.59~126ng/g,六六六(HCHs)的浓度为nd~2.65ng/g。有机氯农药的分布特征为茅尾海>钦州外湾,茅尾海东岸>西岸。组分分布特征分析显示,DDTs主要来自于历史积累,林丹在某些采样区域内有近期输入。与国内外不同地区沉积物中有机氯农药残留相比,钦州湾沉积物中有机氯农药污染处于低到中等水平。以沉积物生态风险评估值为基准的分析表明,研究区内DDT含量存在较大的生态风险。  相似文献   

15.
实践是检验真理的惟一标准。“一江两岸”的建设和三娘湾景区的开发,之所以成效突出,一方面证明了钦州市委、市政府坚持把党的方针政策与市情结合起来,一切从钦州实际出发,从发展大局出发,具有战略眼光;另一方面,也体现了钦州市委、市政府坚决贯彻思路决策、求真务实抓落实的作风。  相似文献   

16.
2015~2016年对广西钦州湾进行4个航次的调查,采集海水样品分析该港湾总溶解态氮(total dissolved nitrogen,TDN)、总溶解态磷(total dissolved phosphorus,TDP),以及溶解态有机氮(dissolved organic nitrogen,DON)和溶解有机磷(dissolved organic phosphorus,DOP)一年的浓度分布特征及季节变化。结果表明,2015~2016年间钦州湾海域TDN浓度为9.37~77.52 μmol/L,TDP的浓度为0.20~4.08 μmol/L。受河流径流的影响,钦州湾的TDN和TDP总体上都呈现出从内湾向外湾递减的空间分布特征。DON平均浓度在8月、11月和3月,DOP在8月和3月,都分别高于无机形态的氮、磷。其中,8月份DON和DOP分别占TDN和TDP的72.0%±19.7%和58.4%±20.1%,DON和DOP是钦州湾溶解态氮、磷的重要组成部分,为浮游植物的生长提供营养条件。  相似文献   

17.
为了研究钦州湾养殖区的营养盐分布特征和富营养化现状、趋势和原因,于2018年冬季(2月)和夏季(8月)调查了钦州湾养殖区的营养盐及相应理化因子。结果显示,磷酸盐(PO43?)的浓度为3.7~40.0 μg/L,溶解性无机氮(DIN)浓度为41.1~664.8 μg/L ,其中,硝酸盐(NO3?)占比最高(77%),其次是铵盐(NH4+)(16%),而亚硝酸盐(NO2?)占比最低(7%)。营养盐与理化因子的相关性和主成分分析显示,冬季陆源污染物输入是影响营养盐分布的主要因素,而夏季除了陆源输入外,生物过程对营养盐分布的影响不可忽视,这与夏季DIN和PO43?的浓度明显高于冬季的现象相对应。钦州湾养殖区水体的富营养化指数( EI )范围为0~19.65,平均为4.06,富营养化超标率为77%,其中,夏季水体富营养化程度高于冬季,处于中度富营养化状态。与近40年的历史数据相比,钦州湾水体富营养化状态呈显著增长趋势。与此相对应,钦州湾养殖区水体的N/P下降明显(低于Redfield值),其根本原因是磷排放的增加。  相似文献   

18.
钦州湾海水养殖区水体有机磷酸酯的污染特征及生态风险   总被引:1,自引:1,他引:0  
本文对广西钦州湾养殖区水体中11种常见的有机磷酸酯(OPEs)阻燃剂和增塑剂采用固相萃取和气质联用的分析方法进行了研究,结果表明11种OPEs的总浓度范围为32.9~227 ng/L,平均126 ng/L,处于国际上类似区域的较低水平。钦州湾养殖塘不同OPEs单体的含量水平主要受其自身的水溶性和辛醇-水分配系数(KOW)影响。OPEs的生产与消费量也在一定程度上影响其含量水平。因此,TCEP、TCPP和TBEP是钦州湾养殖区水体中浓度最高的三种OPEs。总体上,OPEs在养殖塘水体中的浓度高于附近开放的河口与近岸海水,这可能是人为排放的OPEs通过养殖水源(河流与近岸海水)进入养殖塘并得以蓄积的结果。氯代OPEs在养殖塘表现出比非氯代OPEs更高的蓄积能力或持久性。目前,研究区域OPEs浓度水平对周围环境无显著生态影响,但由于其可能会富集在海产品中并通过食物暴露给人体,其健康风险不容忽视。  相似文献   

19.
刘璐  李艳  孙萍  王宗灵  辛明 《海洋环境科学》2020,39(5):776-784, 790
2013—2014年在钦州湾外湾海域共进行了4次现场调查,研究了水采浮游植物群落结构季节变化特征及其与环境因子的相关关系。共鉴定出浮游植物8门71属148种(包括变型和变种),群落组成以硅藻为主,甲藻次之。优势种仅在2014年12月为定鞭藻球形棕囊藻(Phaeocystis globosa),其他航次均为多种硅藻,并多为广温性种。不同站位、不同季节的浮游植物物种组成和细胞丰度差异明显。除2014年12月,其他3个航次浮游植物群落多样性指数及均匀度指数较高,群落结构较稳定;2014年12月钦州湾爆发棕囊藻赤潮,与环境条件密切相关,对该海域浮游植物群落结构组成造成影响。使用PRIMER 6进行多元统计分析表明,4个航次浮游植物群落结构存在显著性差异,丰度与环境因子之间有良好的相关性,其中丰度在2013年11月和2014年12月与氮存在较好的相关性;在2014年4月也体现出与无机磷较好的相关性;温度、盐度与丰度相关性主要体现在2014年8月。调查研究发现近年来,钦州湾浮游植物群落结构较为稳定。  相似文献   

20.
通过对钦州湾近20a来6个航次微量重金属Cu、Pb、Zn、Cd、Hg的分析研究,结果发现,该湾5种重金属元素含量具有不同的变化特点,但却具有相似的平面分布特征,高值区多出现于湾中部及外湾海域,内湾海域反而含量较低。这种分布特征的形成,主要来自陆源输入、沉积物向上覆水释放输入、生物体循环转化过程输入及沉积类型和沉积环境的影响,而该湾较强的陆源径流和潮海流等水动力过程在其中起了重要影响作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号