共查询到15条相似文献,搜索用时 75 毫秒
1.
为了研究地铁多线换乘车站换乘通道的火灾烟气扩散规律,利用1:10的地铁多线换乘车站火灾模型装置,在换乘通道内开展多种情景下的火灾实验,对顶棚温度、烟气扩散范围等进行分析,比较不同防烟分区通风联动模式的烟气控制效果.结果表明:自然通风条件下,通道内的烟气受到"L"型的建筑结构影响,在通道的转角附近区域发生蓄积,产生局部温... 相似文献
2.
针对当前地铁十字换乘车站缺少火灾场景系统性分析和评估的问题,釆用1∶10的地铁多线换乘车站火灾实验模型,进行十字换乘车站的火灾场景设计和对应全尺寸火源热释放率0.91~2.60 MW的火灾实验,研究十字换乘车站内站厅及站台危险位置发生火灾时的优化排烟方案。结果表明:站厅一端火灾时,站厅排烟可确保中部换乘通道和站厅另一端楼梯及出口在起火6 min内不受烟气影响;站厅中部火灾时,采用站厅排烟能保障站厅两端楼梯及出口作为疏散通道的安全性。地下2层站台或地下3层站台一端楼梯口发生火灾时,采用站台排烟与站厅送风联动的模式可控制烟气在站台内的扩散范围,确保站台未起火楼梯和站厅层在起火6 min内能够作为安全疏散通道;仅采用站台排烟可以控制烟气在站台内水平方向的扩散,但在火源功率较大时烟气会通过换乘通道和楼梯进入站厅。通过模型实验验证十字换乘车站中采用站厅站台联合通风模式的有效性,并提出多种火源功率、通风模式下的烟气扩散范围和规律,为十字换乘车站的烟气控制模式优化提供了数据支撑。 相似文献
3.
为探究平行换乘车站火灾烟气扩散特性及排烟优化模式,利用1∶10地铁换乘车站模型,在公共站厅、站台、单洞单线隧道、单洞双线隧道中设计多种火灾场景,分析各区域内的顶棚温度分布情况。结果表明:公共站厅不同位置发生火灾时,各区域内的烟气蔓延特性和通风排烟效果不同;站台火灾时,打开屏蔽门能增大补风量,延缓火源上方的升温过程,降低站台内部温升,并且在联合站台及两侧隧道排烟时仅开启火源附近6个屏蔽门有利于提高排烟效率;单洞单线隧道火灾时烟气温度相对较高,单洞双线隧道火灾时,近火源区域内起火隧道和未起火隧道的烟气分布特性不同,烟气可通过打开的屏蔽门蔓延至临近站台,开启隧道排烟及站台送风后能有效减小温升幅度和烟气扩散范围。实验结果可为平行换乘车站中的火灾烟气通风控制方案提供数据支撑。 相似文献
4.
为研究地铁同站台高架换乘车站火灾烟气蔓延特性和防排烟技术,对具有该换乘形式的某实体车站进行全尺寸火灾实验方案设计,结合车站通风排烟模式和列车运行模式,对站厅层、站台层和设备区分别设计不同规模的火灾场景,同时在站内各防烟分区设计安装烟气温度测量装置和流速测试装置,实现同站台高架换乘车站不同结构空间内烟气危险性参数的实时测量。按照本文设计的实验方案在该车站开展了一系列全尺寸实验,后续的研究中将详细介绍不同火源规模、火源位置、通风方式和列车运行模式下的实验结果。 相似文献
5.
为了研究地铁同站台高架换乘车站火灾情况,在地铁同站台高架换乘车站站厅层应急疏散路径关键节点部位开展0.25~0.75 MW规模的全尺寸实验,结合流速、烟气温度和现场观测情况,对自然通风条件下不同部位起火时的火灾危险性进行分析。结果表明:该结构车站站厅火灾危险程度受火源规模、装修形式和通风条件的影响,站厅中部闸机附近起火时,火源阻塞了站厅中部的疏散路径,掺混大量空气的低温烟气在站厅两侧出站闸机处沉降至地面高度;楼扶梯入口处起火时,站内各区域能够形成稳定的烟气分层,人眼高度能见度较高;出入口附近起火时,受自然风的影响,火源下风向区域烟气沉降严重,人眼高度的能见度较低,不利于人员疏散;在实验火灾规模下站厅各区域沉降至危险高度的烟气最高温度为30~41℃。针对此类结构车站站厅的防排烟设计,应综合考虑出入口空间布局和吊顶形式对火灾危险性的影响,利用自然风压形成一定通风换气量,同时,应将掺混空气的低温烟气控制在较小区域内,确保人员疏散路径的能见度和烟气浓度处于安全水平。 相似文献
6.
为了研究烟气在地铁车站隧道内的蔓延特征,及在车站隧道通风排烟系统、区间隧道通风排烟系统及车站公共区通风排烟系统联合排烟情况下烟气控制效果,在一地铁车站隧道内开展了全尺寸火灾实验.实验研究了车站隧道顶部横向排烟作用下的烟气扩散规律,及烟气的温度变化,分析了屏蔽门开关状态下烟气与空气的卷吸混合特性,及区间风机的气流组织对通风排烟的影响.实验结果对于地铁车站隧道火灾防排烟设计提供了数据支持. 相似文献
7.
全尺寸火灾实验是对地铁系统的火灾安全性最有效的检测手段。为了研究地铁车站和隧道火灾烟气扩散和控制规律,及检测地铁防灾系统联动的有效性,在地铁内开展了全尺寸火灾实验研究。本文首先对全尺寸的实验设计进行了报道,设计提出了一套切实可行的实验系统和方案,包括火源系统、测量系统及实验测试的指标参数和实验步骤。并已利用该系统在国内多个城市地铁开展了全尺寸火灾实验。在后续文章中将集中报道在不同城市地铁内不同排烟模式情况下的实验结果。 相似文献
8.
深埋地铁岛式站点火灾模型实验研究(1)-- 实验设计 总被引:6,自引:9,他引:6
随着我国城市轨道交通的发展,地铁深埋站点将越来越多。深埋地铁站点及区间隧道消防安全是深埋站点设计的一个急需解决的科学难题,本文及后续文章将介绍笔者对深埋地铁站点的火灾模型实验研究进展,主要对模型实验的设计、车站站台公共区大系统、轨顶排烟系统、轨底排烟系统、区间隧道排烟系统、测量系统设计等进行介绍。 相似文献
9.
为了解在不同通风模式下地铁十字换乘车站站台火灾发展规律,通过在地铁十字换乘车站站台开展全尺寸火灾实验,分析了不同通风模式下站台层火灾的烟气扩散速率、沉降高度和扩散范围。研究结果表明:该类型车站站台火灾烟气扩散受到建筑结构和通风条件等因素的影响;在A线路站台层发生火灾时,站台断面面积沿烟气扩散方向的缩小有效抑制了烟气向远端扩散;站台机械通风能够有效降低烟气扩散速率,控制烟气扩散区域和沉降高度;在0.5 MW火灾规模下,A线路站台火灾对B线路影响不明显。 相似文献
10.
为了全面了解在不同通风模式下地铁十字换乘车站站厅火灾发展规律,通过在8A编组地铁十字换乘车站公共站厅层开展1 MW规模的全尺寸火灾实验,对不同通风模式下换乘地铁车站站厅层公共区火灾场景下的烟气前锋到达时间、烟气扩散与沉降范围和楼扶梯处温度等参数进行分析研究。研究结果表明:在换乘线路A线站厅层发生火灾时,受到出入口自然风以及站厅层空间结构的影响,站厅内形成了由站厅北侧向南侧方向的风压,有效抑制了烟气向B线站厅扩散;通风排烟系统能够有效降低烟气扩散速率,控制烟气扩散范围和沉降高度;针对此类结构车站站厅的防排烟设计,应综合考虑通风、出入口位置和空间构筑物对火灾烟气扩散的影响,确保火灾过程中人员疏散路径和楼扶梯处烟气层高度和烟气温度处于安全水平。 相似文献
11.
深埋地铁岛式站点火灾模型实验研究(3)--站台火灾 总被引:4,自引:8,他引:4
随着我国城市轨道交通的发展,地铁深埋站点将越来越多。深埋地铁站点及区间隧道消防安全是深埋车站设计过程中需要加以考虑的科学问题,本文主要介绍深埋地铁车站站台火灾模型实验过程,分析火源功率为205MW的站台火灾过程中,烟气在站台内的蔓延过程、站台内气流组织情况、站台烟气向邻近空间蔓延的特点;探讨深埋车站烟气蔓延和控制规律,为深埋站点的火灾安全设计提供参考。 相似文献
12.
深埋地铁岛式站点火灾模型实验研究(2)--列车火灾 总被引:7,自引:2,他引:7
列车停靠站台时一旦发生火灾,火灾烟气将向站台和区间隧道空间蔓延.尤其对于深埋地铁车站,如何控制车站列车火灾是地铁设计过程中必需解决的科学问题之一.这里,笔者利用深埋地铁车站模型实验台研究了列车停靠在站台时发生火灾情况下,火灾烟气蔓延规律,分析了火灾烟气有效控制方案,研究结果有利于火灾时深埋车站排烟模式的选择. 相似文献
13.
为研究地铁“T”形换乘车站通道火灾时站厅不同防烟分区通风系统联动模式的烟气控制效果,采用火灾动力学软件FDS构建了换乘通道内乘客行李火灾场景,对起火通道、两侧站厅通风系统和防火门不同联动模式下的顶棚烟气温度、人眼高度及危险高度的CO浓度和能见度进行计算模拟。结果表明:关闭起火通道防火门能够将烟气控制在局部区域,但会加快通道内CO浓度上升和能见度下降的速度;各防烟分区通风系统均执行排烟动作虽然会导致烟气向两侧站厅蔓延,但危险高度的能见度始终在安全逃生的最低限值以上;烟气扩散至补风防烟分区时,新鲜空气与烟气的掺混将加快烟气沉降速度,不利于人员疏散和应急救援。 相似文献
14.
史聪灵 《中国安全生产科学技术》2011,7(4):11-17
地铁系统日常运行时承载着大规模客流,特别是地铁换乘车站,应对的是两条或者更多条线路客流的集聚和换乘,突发大客流容易造成运营安全事故。文章针对地铁客流疏运的宏观疏运组织和微观个体行为的耦合过程。分析提出了换乘车站大客流疏运风险分析的基本要素和步骤,并给出了疏运风险分析方法及需要关注的主要指标。基于智能个体和矢量空间模拟技术,建立了地铁大客流疏运模拟方法。结合某T型地铁换乘车站,对地铁换乘的客流运动过程进行了模拟仿真,分析了空间使用率、乘客滞留情况、空间人员瞬时密度、换乘时间和换乘距离等指标,辨识了客流高风险位置。文章提出的模拟方法和结论可为国内外类似车站制定客流组织方案及通道设计提供参考。 相似文献
15.
利用火灾动力学模拟方法,对地下一层地铁侧式车站列车火灾的烟气蔓延规律和排烟效果进行了模拟研究。首先生成了地铁车站的三维模型,基于通风排烟系统的事故运行方案,对列车火灾烟气扩散过程、气流组织模式和烟气参数进行了计算模拟。模拟表明:排烟系统启动后,中间隧道的两端向内形成了大于5m/s的流速,屏蔽门处流速为站台流入隧道,可有效阻碍烟气进入站台区域,烟气排放主要通过车站轨顶风口排放,烟气在500s左右进入站台,排烟系统有效减缓烟气在站台的下降时间,为列车内乘客疏散提供了可用的安全疏散时间。 相似文献