首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Intergovernmental Panel on Climate Change (IPCC) reports an acceleration of the global mean sea-level rise (MSLR) in the twentieth century in response to global climate change. If this acceleration remains constant, then some coastal areas are most likely to be inundated by the year 2100. The ability to identify the differential vulnerability of coastlines to future inundation hazards as result of global climate change is necessary for timely actions to be taken. Yildiz et al. (Journal of Mapping, 17, 1-75, 2003) reported that the local MSLR in the city of Izmir rose at a rate of 6.8 +/- 0.9 mm year(-1) between 1984 and 2002. In this study, the spatial distribution of the coastal inundation hazards of Izmir region was determined using not only land-use and land-cover (LULC) types derived from the maximum likelihood classification of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) multi-spectral image set but also the classification of the digital elevation model (DEM) acquired by the shuttle radar topography mission (SRTM). Coastal areas with elevations of 2 and 5 m above mean sea-level vulnerable to inundation were found to cover 2.1 and 3.7% of the study region (6,107 km(2)), respectively. Our findings revealed that Menemen plain along Gediz river, and the settlements of Karsiyaka, Alacati, Aliaga, Candarli and Selcuk are at high risk in order of decreasing vulnerability to permanent and episodic inundation by 2100 under the high MSLR scenarios of 20 to 50 mm year(-1).  相似文献   

3.
The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields and new built-up areas. All these changes happened without a proper monitoring and urban planning strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map was obtained by visual interpretation and manual digitization of land-use patches. The images used, dated 2011, were obtained from Digital Globe’s WorldView 1 and WorldView 2 satellites. Nine land-use classes and 18 subclasses were identified and mapped. During a field survey, ground control points were collected to test the geographic and thematic accuracy of the land-use map. The final product’s overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps were created using images from the early 2000s derived from Google Earth historical imagery. Post-classification comparison of the classified maps showed that growth of built-up and agricultural areas resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef habitat. The LULC map of the Republic of the Maldives produced in this study can be used by government authorities to make sustainable land-use planning decisions and to provide better management of land use and land cover.  相似文献   

4.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

5.
Estimation of late twentieth century land-cover change in California   总被引:1,自引:0,他引:1  
We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973?C2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state??s land cover by 2000.  相似文献   

6.
The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km2 in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km2 (42.64 %) during the study period (1875–2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.  相似文献   

7.
为了厘清改革开放以来忻州市各类生态系统及生态系统格局的时空特征,使用忻州全市1980、2000、2018年的土地利用和覆盖(LULC)二级分类数据,经过土地转移矩阵和景观格局指数计算,探讨分析了忻州市改革开放以来近40年的LULC及格局的长时间序列时空变化特征,以揭示忻州市的生态环境变化态势。研究区近40年来以城镇用地和其他建设用地增加为主,其他各类减少,城镇化和人口增长带来的土地和生态压力主要集中在草地、耕地以及湿地上;其中2000—2018年的变化更剧烈,人类活动对自然的干扰加剧,但同时在这一阶段已经开始了森林、湿地的保护,开展经济发展与生态文明同步建设。  相似文献   

8.
Land cover changes affect ecological landscape spatial pattern, and evolving landscape patterns inevitably cause an evolution in ecosystem functionality. Various ecological landscape variables, such as biological productivity (plant biomass and stock capacity), soil nutrients (organic matter and N content) and water source conservation capacity are identified as landscape function characteristics. A quantitative method and digital model for analyzing evolving landscape functionality in the headwaters areas of the Yangtze River, China were devised. In the period 1986–2000, patch transitions of the region's evolving landscapes have been predominantly characterized by alpine cold swamp meadow, with the highest coverage tending to be steppified meadow or steppe, and desertification landscape such as sand and bare rock land expansion. As the result of such changes, alpine swamp areas decreased by 3.08 × 103 km2 and the alpine cold sparse steppe and bare rock and soil land increased by 6.48 × 103 km2 and 5.82 × 103 km2, respectively. Consequently, the grass biomass production decreased by 2627.15 Gg, of which alpine cold swamp meadows accounted for 55.9% of this loss. The overall stock capacity of the headwaters area of the Yangtze River decreased by 920.64 thousand sheep units, of which 502.02 thousand sheep units decreased in ACS (Alpine cold swamp) meadow transition. Soil organic matter and N contents decreased significantly in most alpine cold meadow and swamp meadow landscape patches. From 1986 to 2000 the total losses of soil organic matter and total N in the entire headwaters region amounted to 150.2 Gkg and 7.67 Gkg. Meanwhile, the landscape soil water capacity declined by 935.9 Mm3, of which 83.9% occurred in the ACS meadow transition. In the headwater area of the Yangtze River, the complex transition of landscape resulted in sharp eco-environmental deterioration. The main indication for these changes involved the intensity of the climate in this region is becoming drier and warmer, resulting in a gradual degradation of the permafrost.  相似文献   

9.
Land use change resulted in land degradation is a focus of research on global environmental changes and plays a significant role in the stability and economic development of oases in arid regions of China. Jinta Oasis, a typical oasis of temperate arid zone in northwestern China, was investigated to assess land-use change dynamics during 1988–2003 with the aid of satellite remote sensing and GIS, and to explore the interaction between these changes and oasis environment. Six land-use types were identified, namely: cropland, forestland, grassland, water, urban or built-up land, and barren land. The results indicate that cropland, urban/built-up land, and barren land increase greatly by 30.03, 13.35, and 15.52 km2, respectively; but grassland and forestland areas decrease rapidly by 58.06, and 1.76 km2, respectively. These results also show that obvious widespread changes in land-use occur within the whole oasis over the study period and result in severe problems of environmental degradation (i.e. land desertification, decline of groundwater, and vegetation degeneracy).  相似文献   

10.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

11.
This paper focuses mainly on the coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey. The Konya Closed Basin exists at the Central Anatolia Region and covers a region of 50,000 km2 area corresponding to the 7% cumulative area of Turkey in which three million people live, 45% in rural areas and 55% in urban areas. The basin is surrounded with the city centers of Konya, Aksaray, Karaman, Isparta, Ni?de, Ankara, Nev?ehir, and Antalya cities. In this study, these changes were examined using Landsat TM and ETM+ 1987–2006 and 1990–2000. In the image processing step, image and vectorization of the satellite images were carried out to monitor coastline changes over the lakes located in the Konya Closed Basin Area. At the end of the study, significant coastline movements were detected for a 19-year period due to drought effects, agricultural watering, and planning mistakes experienced in the basin.  相似文献   

12.
The study presents a new methodology to quantify spatiotemporal dynamics of climate change vulnerability at a regional scale adopting a new conceptual model of vulnerability as a function of climate change impacts, ecological stability, and socioeconomic stability. Spatiotemporal trends of equally weighted proxy variables for the three vulnerability components were generated to develop a composite climate change vulnerability index (CCVI) for a Mediterranean region of Turkey combining Landsat time series data, digital elevation model (DEM)-derived data, ordinary kriging, and geographical information system. Climate change impact was based on spatiotemporal trends of August land surface temperature (LST) between 1987 and 2016. Ecological stability was based on DEM, slope, aspect, and spatiotemporal trends of normalized difference vegetation index (NDVI), while socioeconomic stability was quantified as a function of spatiotemporal trends of land cover, population density, per capita gross domestic product, and illiteracy. The zones ranked on the five classes of no-to-extreme vulnerability were identified where highly and moderately vulnerable lands covered 0.02% (12 km2) and 11.8% (6374 km2) of the study region, respectively, mostly occurring in the interior central part. The adoption of this composite CCVI approach is expected to lead to spatiotemporally dynamic policy recommendations towards sustainability and tailor preventive and mitigative measures to locally specific characteristics of coupled ecological–socioeconomic systems.  相似文献   

13.
This study aimed to analyze the impact of Zayandehrood Dam on desertification using the spatio-temporal dynamics of land use/land cover (LULC) and land surface temperature (LST) in an arid environment in central Iran from 1987 to 2014. The LULC and LST images were calculated from Landsat TM, ETM+, and OLI data, and their accuracies were assessed against reference data using error matrix and linear regression analysis. Results showed that salty and bare lands increased up to 57,302 ha, while agricultural lands declined substantially (28,275.58 ha) in the region. The changes in LULC classes resulted in dramatic variations in LST values. The average temperature showed a 5.03 °C increase, and the minimum temperature increased by 5.66 °C. LST had an increasing trend in bare lands (8.74 °C), poor rangelands (6.8 °C), agricultural lands (9.46 °C), salty lands (9.6 °C), and residential areas (3.18 °C) in this 27-year period. Rainfall and temperature trend analysis revealed that the main cause of these extreme changes in LULC and LST was largely attributed to the drying up of Zayandehrood River due to dam construction and allocating water mainly for industrial sectors. Results indicate that in addition to LULC changes, the spatio-temporal variations of LST can be used as an effective index in desertification assessment and monitoring in arid environments.  相似文献   

14.
A study of 13 small (less than 7.5 km2) watersheds on Mt. Desert Island, Maine, was conducted from January 1999 to September 2000 to determine nutrient export delivery to coastal waters around the island, and to determine whether a series of wildfires in 1947 have affected nutrient export in burned watersheds. Nutrient export (nitrate–nitrogen, total nitrogen, total phosphorus) was determined for each watershed during the study period, and was normalized by watershed area. The yield of nitrate–nitrogen (N) ranged from 10 to 140 kg/km2/year. Total N yield ranged from 42 to 250 kg/km2/year. Total phosphorus (P) yield ranged from 1.4 to 7.9 kg/km2/year. Watersheds entirely within Acadia National Park (lacking human land-based nutrient sources) exported significantly less total N and total P than watersheds that were partly or entirely outside the park boundary. Nitrate–N export was not significantly different in these two groups of watersheds, perhaps because atmospheric deposition is a dominant source of nitrate in the study area. No relation was observed between burn history and nutrient export. Any effect of burn history may be masked by other landscape-level factors related to nutrient export.  相似文献   

15.
Köyce?iz Lake is located in the south-western part of Turkey. The area between the Köyce?iz Lake and the Mediterranean Sea is covered with four small lakes and several canals. The surroundings of the lake, canals and forests have a great potential as a reproduction areas for Mediterranean Sea turtles (Caretta caretta) and sheltering place for various animals. In the vicinity of this system there are agricultural areas and small settlements. In this region the most important economic activities are tourism and fisheries. However, the lake is currently threatened by pollution because of (1) non-point source pollution (agriculture); (2) point sources (land-based fish farms); (3) inefficient sewerage systems; (4) uncontrolled soil erosion in its drainage basin; (5) inappropriate flood control measures; and (6) channel traffic. This study evaluates the influence of its influent creeks namely Namnam and Yuvarlakçay Creek on the water quality of Köyce?iz Lake, mainly because the creeks are believed to be responsible for the major pollutant load reaching the lake. Accordingly, this study demonstrates (1) change in the water quality of Köyce?iz Lake from 2006 to 2007; (2) the water quality classification of the major influent creeks feeding Köyce?iz Lake; and (3) how land-based fish farm influences Yuvarlakçay Creek water quality in a Köyce?iz–Dalyan Specially Protected Area.  相似文献   

16.
This article reports findings of a study that examined the impacts of urban growth on forest cover in Istanbul between 1987 and 2007. Four Landsat images from 1987, 1990, 2000, and 2007 were classified with maximum likelihood supervised classification method by using ERDAS IMAGINE 9.1. Forest and urban areas were given highest importance in the classification, while other land-use characteristics, like agriculture and bare soil, were grouped into a third class as others. The study revealed that rapid increase in population and accompanying unplanned urban growth in Istanbul resulted in significant changes in land use after 1987. Urban areas have expanded 87.9% from 1987 to 2007, while forest areas declined 5.4% in the same period. One of the most significant results of the study was that total forest areas in Istanbul have increased 0.3% between 2000 and 2007. This suggests that progress has been made in Istanbul not only in having sustainable urban growth, but also in preserving, restoring, and even expanding forest areas, especially after the year 2000.  相似文献   

17.
Modeling of non-point source pollution in a Mediterranean drainage basin   总被引:2,自引:0,他引:2  
SWAT ver. 2000 was used to predict hydrographs, and sediment, nitrate and total phosphorus loadings from a 1349 km2 mountainous/agricultural watershed in Northern Greece. The model was calibrated and verified using continuous meteorological data from eight stations within the drainage area, and runoff, sediment and nutrient concentrations measured at nine stations located within the main tributaries of the watershed, for the time period from May 1st, 1998 to January 31st, 2000. Model validation methodology and resulting input parameters appropriate for Mediterranean drainage basins are presented. Predicted by the model hydrographs, sedimentographs and pollutographs are plotted against observed values and show good agreement. Model performance is evaluated using the root mean square error computation and scattergrams of predicted versus observed data. The validated model is also used to test the effectiveness of three alternative cropping scenarios in reducing nutrient loadings from the agricultural part of the watershed. The study showed that this model, if properly validated, can be used effectively in testing management scenarios in Mediterranean drainage basins.  相似文献   

18.
I developed a fish-based index of biotic integrity (IBI) to assess environmental quality in intermittent headwater streams in Wisconsin, USA. Backpack electrofishing and habitat surveys were conducted four times on 102 small (watershed area 1.7–41.5 km2), cool or warmwater (maximum daily mean water temperature ≥22 C), headwater streams in spring and late summer/fall 2000 and 2001. Despite seasonal and annual changes in stream flow and habitat volume, there were few significant temporal trends in fish attributes. Analysis of 36 least-impacted streams indicated that fish were too scarce to calculate an IBI at stations with watershed areas less than 4 km2 or at stations with watershed areas from 4–10 km2 if stream gradient exceeded 10 m/km (1% slope). For streams with sufficient fish, potential fish attributes (metrics) were not related to watershed size or gradient. Seven metrics distinguished among streams with low, agricultural, and urban human impacts: numbers of native, minnow (Cyprinidae), headwater-specialist, and intolerant (to environmental degradation) species; catches of all fish excluding species tolerant of environmental degradation and of brook stickleback (Culaea inconstans) per 100 m stream length; and percentage of total individuals with deformities, eroded fins, lesions, or tumors. These metrics were used in the final IBI, which ranged from 0 (worst) to 100 (best). The IBI accurately assessed the environmental quality of 16 randomly chosen streams not used in index development. Temporal variation in IBI scores in the absence of changes in environmental quality was not related to season, year, or type of human impact and was similar in magnitude to variation reported for other IBI's.  相似文献   

19.
This research is focused on the coastline evolution monitoring and its potential change estimation by remote sensing techniques using multi-temporal Landsat images at the southeast coasts of the Mediterranean Sea in Turkey. The study area includes the coastal zone located in the Cukurova Delta coasts. The Cukurova Delta has accreted toward the Mediterranean Sea as a result of sediment discharge and transport from Seyhan and Ceyhan rivers. These processes have caused the morphological changes (accretion or erosion) of coastline along some parts of the southeast coasts of the Mediterranean Sea. In this study, coastline changes were researched by using radiometrically and geometrically corrected multi-temporal and multi-spectral data from Landsat Multispectral Scanner dated 1972, Thematic Mapper dated 1987, and Enhanced Thematic Mapper dated 2002. In the image processing steps, mosaicing, subset, Iterative Self-Organizing Data Analysis Technique classification, band ratioing (B5/B2), edge detection, and overlay techniques were used to carry out coastline extraction and the Digital Shoreline Analysis System was used to calculate rate of coastline changes. As a result of the analysis, in some parts of the research area, remarkable coastline changes (more than 2,900 m withdrawal and ??24.50 m/year erosion) were observed for a 30–year period.  相似文献   

20.
The main goal of this study is to investigate the dimension of climate change effects in Salt Lake and its vicinity in Turkey using satellite remote sensing data. The first stage of the study includes evaluation of the multitemporal climatic data on the Salt Lake Basin Area, Turkey for a period of 35 years (1970–2005). The changes in mean temperature and precipitation are evaluated for the study area by comparing two periods, 1970–1992 and 1993–2005. In the second stage, the effects of climate changes in the Salt Lake are investigated by evaluating water and salt reserve changes through seasonal and multitemporal SPOT imagery collected in 1987 and 2005. The climatic data and remotely sensed and treated satellite images show that water and salt reserve in Salt Lake has decreased between 1987 and 2005 due to drought and uncontrolled water usage. It is suggested that the use of water supplies, especially underground waters, around the Salt Lake should be controlled and the lake should regularly be monitored by current remote sensing data for an effective management of water and salt resources in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号