首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
The effect of dichlorvos (DDVP) (0-0, dimethyl 2:2-dichlorovinyl phosphate), on various lipid fractions and lipid peroxidation in the discrete areas of the brain and spinal cord were studied in the fresh water teleost (Heteropneustes fossilis). Fishes were exposed to three different doses (3.0, 6.0 and 9.0 ppm) of DDVP daily for 7 days. Dose-related increase in the levels of total lipids, cholesterol and esterified fatty acids was detected in the fore brain, optic lobes, cerebellum, medulla oblongata and spinal cord. However, phospholipids were significantly decreased in the aforementioned regions of the central nervous system. The rate of lipid peroxidation was significantly increased in all the regions of the CNS.  相似文献   

2.
Abstract

The effect of dichlorvos (DDVP) (0–0, dimethyl 2: 2‐dichlorovinyl phosphate), on various lipid fractions and lipid peroxidation in the discrete areas of the brain and spinal cord were studied in the fresh water teleost (Heteropneustes fossilis). Fishes were exposed to three different doses (3.0, 6.0 and 9.0 ppm) of DDVP daily for 7 days. Dose‐related increase in the levels of total lipids, cholesterol and esterified fatty acids was detected in the fore brain, optic lobes, cerebellum, medulla oblongata and spinal cord. However, phospholipids were significantly decreased in the aforementioned regions of the central nervous system. The rate of lipid peroxidation was significantly increased in all the regions of the CNS.  相似文献   

3.
The present study was designed to determine if chronic exposure of weanlings and adult rats to Mn produces significant alterations in amino acid concentrations in different regions of the rat brain. Weanling (30 day old) and adult (90 day old) male rats were exposed to 10 and 20 mg Mn/kg body weight per day, by gavage, for 30 days. Forty-eight hours after the last dose, animals were sacrificed by decapitation and brains were dissected into different regions to determine the concentration of amino acids by HPLC/EC. A dose dependent decrease in body weight gain was found in the adult, but not in the weanling rats. Significant increases occurred in concentrations of aspartate, glutamate, glutamine, taurine and gamma-aminobutyric acid (GABA) in the cerebellum of the adult rats dosed with 20 mg/kg per day, Mn. A significant decrease in the concentration of glutamine was observed in caudate nucleus and hippocampus of weanling rats dosed with 10 mg/kg, Mn. These data suggest that chronic Mn exposure can produce a decrease in body weight gain in adult rats and alterations in amino acids in different regions of weanling and adult rat brains.  相似文献   

4.
This study was undertaken to determine the redox balance in the developing brain after exposure to acrylamide (ACR), a potent neurotoxin. The studies were performed using an in ovo chick embryo model. The antioxidant enzymes SOD, GPx, CAT, and reduced glutathione (GSH) were used as indicators of the redox balance. Eggs were injected with ACR doses of 40 mg kg?1 egg mass (2.4 mg egg?1) on embryonic day 17 (E17). The activity of the antioxidant enzymes and the concentration of GSH were measured at E17, E18, and E19 in the medulla oblongata, cerebrum, cerebellum, and optic lobe. The results indicated a significant decrease in the GSH concentrations in the optic lobe (E19, E20) and cerebrum (E20) of embryos exposed to ACR. The activities of SOD and GPx were significantly increased in the majority of the examined structures after injection of ACR. CAT activity was completely inhibited in the brains of the embryos exposed to ACR compared to that in the brains of the control embryos. Thus, we concluded that ACR exerts a significant influence on the redox balance in the developing brain by impacting the activity of antioxidant enzymes and the levels of GSH.  相似文献   

5.
Abstract

The present study was designed to determine if chronic exposure of weanlings and adult rats to Mn produces significant alterations in amino acid concentrations in different regions of the rat brain. Weanling (30 day old) and adult (90 day old) male rats were exposed to 10 and 20 mg Mn/kg body weight per day, by gavage, for 30 days. Forty‐ eight hours after the last dose, animals were sacrificed by decapitation and brains were dissected into different regions to determine the concentration of amino acids by HPLC/EC. A dose dependent decrease in body weight gain was found in the adult, but not in the weanling rats. Significant increases occurred in concentrations of aspartate, glutamate, glutamine, taurine and y‐aminobutyric acid (GABA) in the cerebellum of the adult rats dosed with 20 mg/kg per day, Mn. A significant decrease in the concentration of glutamine was observed in caudate nucleus and hippocampus of weanling rats dosed with 10 mg/kg, Mn. These data suggest that chronic Mn exposure can produce a decrease in body weight gain in adult rats and alterations in amino acids in different regions of weanling and adult rat brains.  相似文献   

6.
Abstract

Central serotoninergic (5‐hydroxytryptamine, 5HT) pathways are believed to be involved in the mechanisms of anorexia and/or emesis evoked by the trichothecene mycotoxin deoxynivalenol (DON). Using an in vitro membrane receptor binding assay, the competitive potency of DON was investigated against several radioactive ligands that have a high affinity for selective 5HT‐receptor subgroups. Receptor site densities and displacement profiles in twelve selected regions of pig brain were investigated. Overall, DON possessed only minimal efficacy to competently block any of the 5HT‐ligands tested. IC50 values (50% inhibitory concentration) of at least 5 mM DON were required to inhibit binding, and in certain regions concentrations of 100 mM were ineffective. In comparison, several standard 5HT‐antagonists showed 103‐105 times greater capability than DON to displace binding of these ligands. Because these results indicated DON possesses only weak affinity for the 5HT‐receptor subtypes investigated here, this suggested that in vivo, unless relatively high concentrations of the toxin are present, its pharmacological effects may be mediated by mechanisms other than a functional interaction with serotoninergic receptors at the central level.  相似文献   

7.
Abstract

Deoxynivalenol (DON, vomitoxin) commonly produced by Fusarium fungi can alter feeding behaviour of pigs and other farm animals. The effects of dietary tryptophan (TRP, precursor of brain amine serotonin) in combination with DON were examined in mice to determine if TRP can modulate DON toxicity. Results indicated that brain TRP can be influenced by dietary TRP, but no evidence of TRP potentiating DON toxicity was observed. Higher TRP levels likely induced amino acid imbalance leading to weight gain suppression.  相似文献   

8.
The aim of this in vitro study was to examine the secretion activity, markers of proliferation and apoptosis in porcine ovarian granulosa cells (GCs) after deoxynivalenol (DON) addition. Ovarian granulosa cells were incubated with DON for 24h: 10, 100 and 1000 ng/mL, while the control group received no DON. The secretion of insulin-like growth factor I (IGF-I) and progesterone was determined by radioimmunoassay (RIA) and expression of cyclin B1, PCNA and caspase-3 by immunocytochemistry. IGF-I release by GCs was inhibited by DON, while progesterone release and the expression of cyclin B1 was stimulated by DON (at 1000 ng/mL but not at 10 and 100 ng/mL). PCNA expression was stimulated by DON (at 100 and 1000 ng/mL but not at 10 ng/mL). Caspase-3 expression was not influenced by DON treatment (at all doses). In conclusion, our results indicate, (1) a direct effect of DON on secretion of growth factor IGF-I and steroid hormone progesterone, (2) expression of markers of proliferation (cyclin B1 and PCNA) but not on the (3) expression of marker of apoptosis (caspase-3) in porcine ovarian granulosa cells. This in vitro study suggests the dose-dependent association of DON on porcine ovarian functions.  相似文献   

9.
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).  相似文献   

10.
The aim of this in vitro study was to examine the secretion activity, markers of proliferation and apoptosis in porcine ovarian granulosa cells (GCs) after deoxynivalenol (DON) addition. Ovarian granulosa cells were incubated with DON for 24h: 10, 100 and 1000 ng/mL, while the control group received no DON. The secretion of insulin-like growth factor I (IGF–I) and progesterone was determined by radioimmunoassay (RIA) and expression of cyclin B1, PCNA and caspase-3 by immunocytochemistry. IGF–I release by GCs was inhibited by DON, while progesterone release and the expression of cyclin B1 was stimulated by DON (at 1000 ng/mL but not at 10 and 100 ng/mL). PCNA expression was stimulated by DON (at 100 and 1000 ng/mL but not at 10 ng/mL). Caspase-3 expression was not influenced by DON treatment (at all doses). In conclusion, our results indicate, (1) a direct effect of DON on secretion of growth factor IGF-I and steroid hormone progesterone, (2) expression of markers of proliferation (cyclin B1 and PCNA) but not on the (3) expression of marker of apoptosis (caspase-3) in porcine ovarian granulosa cells. This in vitro study suggests the dose-dependent association of DON on porcine ovarian functions.  相似文献   

11.
The absorption of deoxynivalenol (DON; vomitoxin), a trichothecene mycotoxin produced by Fusarium species, was studied in the dairy cow. Serum and milk DON levels were quantitated following a single oral dose of 920 mg DON to each of two lactating cows of similar weight. Maximum blood levels for the two animals following DON administration were 200 and 90 ng/ml serum, occurring at times 4.7 and 3.5 hr, respectively. By 24 hr after dosing only trace levels (less than 2 ng/ml) were still detectable. DON in its conjugated form accounted for 24-46% of the total levels present in serum. Free and conjugated DON were also present in cow's milk, but only extremely low amounts (less than 4 ng/ml) were detected. Detection of DON was carried out utilizing Sep-Pak C18 extraction cartridges for isolation, with additional purification of the sample achieved by passing the extract through a short charcoal/alumina column. The extract was then reacted with N-heptafluorobutyrylimidazole prior to quantitation of the resulting DON-tris-heptafluorobutyrate derivative by combined gas chromatography-quadrupole mass spectrometry, using multiple selected ion monitoring. Detection limits were as low as 1 ng/ml (1 ppb).  相似文献   

12.
The research objective was to adapt the ultraviolet (UV)-photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 2(2) factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 degrees C occurred at pH 2.0 with a 24-hr irradiance period at concentrations <33 microM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4+), but urea released a near equimolar ratio of NH4+ and nitrate (NO3-). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 +/- 29.2 nmol-Nm(-3) and 8.3 +/- 4.9 nmol-Nm(-3), respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 +/- 5.7%, and the majority of the DON (79.1 +/- 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 +/- 25.6 nmol-Nm(-3) and 6.5 +/- 4.4 nmol-Nm(-3), respectively.  相似文献   

13.
Day-old mallard (Anas platyryhnchos) ducklings received either a clean sediment (24%) supplemented control diet, Coeur d'Alene River Basin, Idaho (CDARB) sediment (3449 microg/g lead) supplemented diets at 12% or 24%, or a positive control diet (24% clean sediment with equivalent lead acetate to the 24% CDARB diet) for 6 weeks. The 12% CDARB diet resulted in a geometric mean concentration of 396 ppb (WW) brain lead with decreased brain protein and ATP concentrations but increased oxidized glutathione (GSSG) relative to the control diet. The 24% CDARB diet resulted in a concentration of 485 ppb brain lead with lower brain weight and ATP concentration than controls but higher concentrations of reduced glutathione (GSH) and calcium. Lead acetate accumulated twice as well as CDARB derived lead and resulted in histopathological lesions of the brain. With a combination of a suboptimal diet and 24% CDARB, brain lead concentration was higher (594 ppb) than with 24% CDARB in the standard diet, histopathological lesions became apparent and GSH was higher than suboptimal diet controls.  相似文献   

14.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

15.
Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation.

Implications: Uncertainties in the estimation of biogenic emissions associated with the characterization of land cover in global and regional data products were examined in eastern Texas. Misclassification between trees and low-growing vegetation in central Texas resulted in substantial differences in isoprene and monoterpene emission estimates and predicted ground-level ozone concentrations. Results from this study indicate the importance of land cover validation at regional scales.  相似文献   

16.
Although organic nitrogen (ON) has been found to be a ubiquitous and significant component in wet and dry deposition, almost nothing is known about its concentration or composition in fog waters. To address this gap, we have investigated the concentration and composition of ON in fog waters collected in Davis, in California's Central Valley. Significant quantities of dissolved organic nitrogen (DON) were found in these samples, with a median concentration of 303 μM N (range=120–1630 μM N). DON typically represented approximately 16% of the total dissolved nitrogen (inorganic+organic) in Davis fog waters. The median concentration of nitrogen in free amino acids and alkyl amines was 16 μM N (range=3.8–120 μM N), which accounted for 3.4% of the DON in Davis fogs. Thus, although the absolute concentrations of free amino compounds were significant, they were only a minor component of the DON pool. Combined amino nitrogen (e.g., proteins and peptides) was present at higher concentrations and accounted for 6.1–29% (median=16%) of DON. Overall, free and combined amino compounds typically accounted for a median value of 22% of DON in the fog waters.The high concentrations of DON found, and the fact that amino and other N-containing organic compounds can serve as nitrogen sources for microorganisms and plants, indicate that atmospheric ON compounds likely play an important role in nitrogen cycling in the Central Valley. In addition, due to the basicity of some N functional groups, ON compounds likely contribute to the previously observed acid buffering capacity of Central Valley fog waters. Finally, a comparison of fog waters with fine particles (PM2.5) collected from the same site during the same period of time indicated that the median concentrations (mol N m−3-air) of total water-soluble ON, free amino nitrogen and total amino nitrogen were very similar in the fog water and PM2.5. Given the high water solubility of many organic N compounds, this result suggests that ON might contribute to the hygroscopic properties of atmospheric particles.  相似文献   

17.
A regional modeling system was applied with inputs from global climate and chemistry models to quantify the effects of global change on future biogenic emissions and their impacts on ozone and biogenic secondary organic aerosols (BSOA) in the US. Biogenic emissions in the future are influenced by projected changes in global and regional climates and by variations in future land use and land cover (LULC). The modeling system was applied for five summer months for the present-day case (1990–1999, Case 1) and three future cases covering 2045–2054. Individual future cases were: present-day LULC (Case 2); projected-future LULC (Case 3); and future LULC with designated regions of tree planting for carbon sequestration (Case 4). Results showed changing future meteorology with present-day LULC (Case 2) increased average isoprene and monoterpene emission rates by 26% and 20% due to higher temperature and solar insolation. However when LULC was changed together with climate (Case 3), predicted isoprene and monoterpene emissions decreased by 52% and 31%, respectively, due primarily to projected cropland expansion. The reduction was less, at 31% and 14% respectively, when future LULC changes were accompanied by regions of tree planting (Case 4). Despite the large decrease in biogenic emission, future average daily maximum 8-h (DM8H) ozone was found to increase between +8 ppbv and +10 ppbv due to high future anthropogenic emissions and global chemistry conditions. Among the future cases, changing LULC resulted in spatially varying future ozone differences of ?5 ppbv to +5 ppbv when compared with present-day case. Future BSOA changed directly with the estimated monoterpene emissions. BSOA increased by 8% with current LULC (Case 2) but decreased by 45%–28% due to future LULC changes. Overall, the results demonstrated that on a regional basis, changes in LULC can offset temperature driven increases in biogenic emissions, and, thus, LULC projection is an important factor to consider in the study of future regional air quality.  相似文献   

18.
The possible effects of a natural substance amygdalin and its combination with the mycotoxin deoxynivalenol (DON) on the steroid hormone secretion (progesterone and 17-β-estradiol) by porcine ovarian granulosa cells (GCs) were examined in this in vitro study. Ovarian GCs were incubated without (control group) and with amygdalin (1, 10, 100, 1,000 and 10,000 μg mL1), or its combination with DON (1 μg mL1) for 24 h. The release of steroid hormones was determined by ELISA. The progesterone secretion by porcine ovarian GCs was not affected by amygdalin in comparison to the control. However, the highest amygdalin dose (10,000 μg mL1) caused a significant stimulation of the 17-β-estradiol release. A combination of amygdalin with DON significantly (P < 0.05) increased the progesterone release at all concentrations. Similarly, a stimulatory effect of amygdalin co-administered with DON was detected with respect to the 17-β-estradiol secretion at the highest dose (10,000 μg mL1) of amygdalin and 1 μg mL1 of DON. Noticeable differences between the effects of amygdalin alone and its combination with DON on the progesterone release were detected. In contrast, no differences between the stimulatory effects of amygdalin and its combination with DON on the 17-β-estradiol synthesis by porcine GCs were observed. Findings from this in vitro study did not confirm the expected protective effect of amygdalin on mycotoxin induced reprotoxicity. Our results indicate that the stimulatory effect of amygdalin combined with DON on the progesterone release was clearly caused by the DON addition, not by the presence amygdalin per se. On the other hand, the stimulation of 17-β-estradiol production was solely caused by the presence of amygdalin addition. These findings suggest a possible involvement of both natural substances into the processes of steroidogenesis and appear to be endocrine modulators of porcine ovaries.  相似文献   

19.
Abstract

The research objective was to adapt the ultraviolet (UV)photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 22 factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 °C occurred at pH 2.0 with a 24-hr irradiance period at concentrations < µM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4 +), but urea released a near equimolar ratio of NH4 + and nitrate (NO3 ?). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 ± 29.2 nmol-Nm?3and 8.3 ± 4.9 nmol-Nm?3, respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 ± 5.7%, and the majority of the DON (79.1 ± 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 ± 25.6 nmol-Nm?3 and 6.5 ± 4.4 nmol-Nm?3, respectively.  相似文献   

20.
The UCD/CIT air quality model was modified to predict source contributions to secondary organic aerosol (SOA) by expanding the Caltech Atmospheric Chemistry Mechanism to separately track source apportionment information through the chemical reaction system as precursor species react to form condensable products. The model was used to predict source contributions to SOA in Los Angeles from catalyst-equipped gasoline vehicles, non-catalyst equipped gasoline vehicles, diesel vehicles, combustion of high sulfur fuel, other anthropogenic sources, biogenic sources, and initial/boundary conditions during the severe photochemical smog episode that occurred on 9 September 1993. Gasoline engines (catalyst+non-catalyst equipped) were found to be the single-largest anthropogenic source of SOA averaged over the entire model domain. The region-wide 24-h average concentration of SOA produced by gasoline engines was predicted to be 0.34 μg m−3 with a maximum 24-h average concentration of 1.81 μg m−3 downwind of central Los Angeles. The region-wide 24-h average concentration of SOA produced by diesel engines was predicted to be 0.02 μg m−3, with a maximum 24-h average concentration of 0.12 μg m−3 downwind of central Los Angeles. Biogenic sources are predicted to produce a region-wide 24-h average SOA value of 0.16 μg m−3, with a maximum 24-h average concentration of 1.37 μg m−3 in the less-heavily populated regions at the northern and southern edges of the air basin (close to the biogenic emissions sources). SOA concentrations associated with anthropogenic sources were weakly diurnal, with slightly lower concentrations during the day as mixing depth increased. SOA concentrations associated with biogenic sources were strongly diurnal, with higher concentrations of aqueous biogenic SOA at night when relative humidity (RH) peaked and little biogenic SOA formation during the day when RH decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号