首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of investigations from many old landfills in Germany and Europe indicate that significant emissions occur under conventional landfill operating conditions (i.e., anaerobic conditions). Significant emissions via the gas phase are predicted to last at least three decades after landfill closure, while leachate emissions are predicted to continue for many decades, potentially even lasting for centuries. When considering the specific type and quality, and quite often lack of, protection barriers associated with old landfills, these leachate and gas emissions may result in a significant negative impact on the environment. However, complete sealing of the landfill only temporarily reduces emissions because dry-conservation of the biodegradable waste fraction results, thus not allowing any severe reduction in the emission and hazardous potential of the landfill to occur. If noticeable damage of the surface capping system occurred in these landfills, infiltrating water would restart the interrupted emission formation. In contrast, aerobic in situ stabilization by means of low pressure aeration attempts to stabilize and modify the inventory of organic matter inside the landfill, acting to reduce the emission potential in a more sustainable manner. By enabling faster and more extensive aerobic degradation processes in the landfill (compared with anaerobic processes), the organics (e.g., hydrocarbons) are degraded significantly faster, resulting in an increased carbon discharge via the gas phase, as well as reduced leachate concentrations. Because carbon dioxide (CO(2)) is the main compound in the extracted off-gas (instead of methane (CH(4)), which dominated under anaerobic landfill conditions), the negative impact of diffuse LFG emissions towards an increased global warming effect may be significantly lowered. With respect to leachate quality, a reduction of organic compounds as well as ammonia-nitrogen can be expected. In addition to these positive ecological effects, aerobic in situ stabilization is associated with significant cost savings potential due to both quantitative and qualitative reductions in the aftercare period. This paper describes the fundamental processes and implications of in situ landfill aeration. Additionally, possible criteria for defining an endpoint of the active aeration process are presented and discussed.  相似文献   

2.
The in situ stabilization of old deposits aims for a lasting and controlled reduction of pollutant emissions from the deposited waste in order to diminish expenditure and the duration of landfill aftercare measures. The stabilization operation so far, observed over a period of 1-2 years at three landfills in Germany, shows that leachate contamination is permanently reduced, biodegradation processes are significantly accelerated and main settlements take place within a short period of time.  相似文献   

3.
Influence of aeration rate on nitrogen dynamics during composting   总被引:6,自引:0,他引:6  
The paper aimed to study the influence of aeration rate on nitrogen dynamics during composting of wastewater sludge with wood chips. Wastewater sludge was sampled at a pig slaughterhouse 24h before each composting experiment, and mixtures were made at the same mass ratio. Six composting experiments were performed in a lab reactor (300 L) under forced aeration. Aeration flow was constant throughout the experiment and aeration rates applied ranged between 1.69 and 16.63 L/h/kg DM of mixture. Material temperature and oxygen consumption were monitored continuously. Nitrogen losses in leachates as organic and total ammoniacal nitrogen, nitrite and nitrate, and losses in exhaust gases as ammonia were measured daily. Concentrations of total carbon and nitrogen i.e., organic nitrogen, total ammoniacal nitrogen, and nitrite and nitrate were measured in the initial substrates and in the composted materials. The results showed that organic nitrogen, which was released as NH4+/NH3 by ammonification, was closely correlated to the ratio of carbon removed from the material to TC/N(org) of the initial substrates. The increase of aeration was responsible for the increase in ammonia emissions and for the decrease in nitrogen losses through leaching. At high aeration rates, losses of nitrogen in leachates and as ammonia in exhaust gases accounted for 90-99% of the nitrogen removed from the material. At low aeration rates, those accounted for 47-85% of the nitrogen removed from the material. The highest concentrations of total ammoniacal nitrogen in composts occurred at the lowest aeration rate. Due to the correlation of ammonification with biodegradation and to the measurements of losses in leachates and in exhaust gases, the pool NH4+/NH3 in the composting material was calculated as a function of time. The nitrification rate was found to be proportional to the mean content of NH4+/NH3 in the material, i.e., initial NH4+/NH3 plus NH4+/NH3 released by ammonification minus losses in leachates and in exhaust gases. The aeration rate was shown to be a main parameter affecting nitrogen dynamics during composting since it controlled the ammonification, the ammonia emission and the nitrification processes.  相似文献   

4.
The long-term effectiveness of the geological barrier beneath municipal-waste landfills is a critical issue for soil and groundwater protection. This study examines natural clayey soils directly in contact with the waste deposited in three landfills over 12 years old in Spain. Several physicochemical and geological parameters were measured as a function of depth. Electrical conductivity (EC), water-soluble organic carbon (WSOC), Cl, NH4+, Na+ and exchangeable NH4+ and Na+ were used as parameters to measure the penetration of landfill leachate pollution. Mineralogy, specific surface area and cationic-exchange capacities were analyzed to characterize the materials under the landfills. A principal component analysis, combined with a Varimax rotation, was applied to the data to determine patterns of association between samples and variables not evident upon initial inspection. The main factors explaining the variation in the data are related to waste composition and local geology. Although leachates have been in contact with clays for long time periods (13-24 years), WSOC and EC fronts are attenuated at depths of 0.2-1.5 m within the clay layer. Taking into account this depth of the clayey materials, these natural substrata (>45% illite-smectite-type sheet silicates) are suitable for confining leachate pollution and for complying with European legislation. This paper outlines the relevant differences in the clayey materials of the three landfills in which a diffusive flux attenuation capacity (Ac) is defined as a function (1) of the rate of decrease of the parameters per meter of material, (2) of the age and area of the landfill and (3) of the quantity and quality of the wastes.  相似文献   

5.
Microbial oxidation of methane from old landfills in biofilters   总被引:1,自引:0,他引:1  
Landfill gas emissions are among the largest sources of the greenhouse gas methane. For this reason, the possibilities of microbial methane degradation in biofilters were investigated. Different filter materials were tested in two experimental plants, a bench-scale plant (total filter volume 51 l) and a pilot plant (total filter volume 4 m3). Three months after the beginning of the experiment, very high degradation rates of up to 63 g CH4/(m3h) were observed in the bench-scale plant at mean methane concentrations of 2.5% v/v and with fine-grained compost as biofilter material. However, the degradation rates of the compost biofilter decreased in the fifth month of the experiment, probably due to the accumulation of exopolymeric substances formed by the microorganisms. A mixture of compost, peat, and wood fibers showed stable and satisfactory degradation rates around 20 g/(m3h) at mean concentrations of 3% v/v over a period of one year. In this material, the wood fibers served as a structural material and prevented clogging of the biofilter. Extrapolation of the experimental data indicates that biofilters for methane oxidation have to be at least 100 times the volume of biofilters for odor control to obtain the same cleaning efficiency per unit volume flow of feed gas.  相似文献   

6.
Oxygen invasion into old landfills was studied by assuming the installation of gas venting pipes to promote stabilization of waste. In an experiment using a column pack with old incombustible waste, oxygen intrusion was observed and the oxygen consumption rate was estimated. Oxygen diffused into the waste layer very quickly in the initial stage of the experiment, but oxygen concentration increased only gradually due to reduced gradient and decreasing oxygen consumption. The maximum oxygen consumption rate in packed waste was one-third of that in loosely deposited waste in a beaker measured in a respiration test. A mathematical model was created which fitted the experimental data well and a three-dimensional simulation of a full-scale landfill and a sensitivity analysis were performed.  相似文献   

7.
Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6 ± 18.0% (average ± standard deviation), while the average carbon storage factor was 0.09 ± 0.06 g biogenic-C stored per g dry sample or 0.66 ± 0.16 g biogenic-C stored per g biogenic C.  相似文献   

8.
The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5°C and the peaks of temperature occurred with less than 8h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5°C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost.  相似文献   

9.
Landfill operators are looking for more accurate models to predict waste degradation and landfill gas production. The simple microbial growth and decay models, whilst being easy to use, have been shown to be inaccurate. Many of the newer and more complex (component) models are highly parameter hungry and many of the required parameters have not been collected or measured at full-scale landfills. This paper compares the results of using different models (LANDGEM, HBM, and two Monod models developed by the author) to fit the gas production of laboratory scale, field test cell and full-scale landfills and discusses some observations that can be made regarding the scalability of gas generation rates.The comparison of these results show that the fast degradation rate that occurs at laboratory scale is not replicated at field-test cell and full-scale landfills. At small scale, all the models predict a slower rate of gas generation than actually occurs. At field test cell and full-scale a number of models predict a faster gas generation than actually occurs.Areas for future work have been identified, which include investigations into the capture efficiency of gas extraction systems and into the parameter sensitivity and identification of the critical parameters for field-test cell and full-scale landfill predication.  相似文献   

10.
Municipal solid waste landfills pose a threat on environment and human health, especially old landfills which lack facilities for collection and treatment of landfill gas and leachate. Consequently, missing information about emission flows prevent site-specific environmental risk assessments. To overcome this gap, the combination of waste sampling and analysis with statistical modeling is one option for estimating present and future emission potentials. Optimizing the tradeoff between investigation costs and reliable results requires knowledge about both: the number of samples to be taken and variables to be analyzed.This article aims to identify the optimized number of waste samples and variables in order to predict a larger set of variables. Therefore, we introduce a multivariate linear regression model and tested the applicability by usage of two case studies. Landfill A was used to set up and calibrate the model based on 50 waste samples and twelve variables. The calibrated model was applied to Landfill B including 36 waste samples and twelve variables with four predictor variables.The case study results are twofold: first, the reliable and accurate prediction of the twelve variables can be achieved with the knowledge of four predictor variables (Loi, EC, pH and Cl). For the second Landfill B, only ten full measurements would be needed for a reliable prediction of most response variables. The four predictor variables would exhibit comparably low analytical costs in comparison to the full set of measurements. This cost reduction could be used to increase the number of samples yielding an improved understanding of the spatial waste heterogeneity in landfills.Concluding, the future application of the developed model potentially improves the reliability of predicted emission potentials. The model could become a standard screening tool for old landfills if its applicability and reliability would be tested in additional case studies.  相似文献   

11.
Replacement of peat as a growing medium by a renewable material, such as an organic waste, is an issue of concern since harvesting of peat has a considerable environmental impact and, actually, it is a non-renewable resource. Cattle manure is a readily available organic waste, which means that once it goes through the composting process, it can be used as an alternative to peat, specifically, the solid fraction obtained from mechanical liquid-solid separation of cattle slurry (SF). Studies have shown it to be suitable for such uses. The purpose of this study was to detect possible changes in the physicochemical and chemical properties of SF when it is composted using different aeration strategies, with an emphasis on the changes that would make it feasible for use as a substrate. With this aim in mind, an experiment was designed with three aeration strategies that would be used during composting. The first consisted of applying air through a static method (forced ventilation). The second involved improving aeration by adding a bulking agent and a dynamic turning method. In the third strategy, aeration was carried out by turning (control). The results show that the different aeration strategies had a clear effect on the evolution of pH, electrical conductivity (EC), nitrate-N, ammonia-N and bicarbonate content. Nitrification was favored under good aeration conditions using the static composting method, probably due to the greater availability of ammonia-N that was transformed into nitrate-N. In general, the low buffering capacity allowed for a reduction of the pH during the curing stage of composting (in conjunction with low temperatures during this period), a characteristic that favors the use of this compost as a growing medium. We also conclude that measuring bicarbonate levels during composting could be used as an indicator of the possible acidification of the material and as a way of evaluating the level of material aeration.  相似文献   

12.
Journal of Material Cycles and Waste Management - Limited options and high prices have limited the application of additives in composting. The effect of applying carbonate (SRC) and biochar (BC) to...  相似文献   

13.
In Japan, incineration ash is subjected to a melting process to reduce waste volume and to stabilize hazardous heavy metals. In previous articles, we reported that large quantities of volatile metals are emitted under ash-melting conditions at temperatures higher than 1200°C and that such emissions are considerably increased under reducing conditions. However, the emission behavior in the presence of large amounts of char particles was unclear, and we suspected that emissions under these conditions might differ from emissions under the previous conditions. Therefore, we investigated heavy metal emissions and the melting characteristics of ash in the presence of carbon particles. In this experiment, a small crucible with ash and carbon was rapidly heated using a high-frequency induction-heating furnace to simulate the melting ash gasification with carbon. As a result, it was found that additive carbon can promote emissions of heavy metals such as zinc and lead and control the melt of the ash.  相似文献   

14.
Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies.In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP21) and respiration activity over 4 days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.  相似文献   

15.
During the past 15 years considerable research has taken place in the U.K. to investigate the decomposition processes occurring within municipal waste landfills. This, in turn, has led to a better understanding of the environmental fate of many industrial wastes currently, or formerly, co-disposed with municipal refuse. Codisposal is defined in this paper as the disposal of chemical wastes in an admixture with domestic waste so that full advantage is taken of the attenuation and biochemical processes operating within a landfill to reduce the environmental impact to an insignificant level. Central to this philosophy is the maintenance of a balanced input of different wastes to ensure that attenuation and degradation processes are not overwhelmed. It is contended that co-disposal is an effective disposal option for a wide range of industrial wastes at correctly sited and well managed landfills.Co-disposal research findings for three selected industrial waste types are presented and related to the scientific basis for the prohibition, or continuation of their disposal to landfills.  相似文献   

16.
17.
Overview of waste disposal and landfills/dumps in Asian countries   总被引:4,自引:0,他引:4  
Many cities in developing Asian countries face serious problems in managing solid wastes. The annual waste generation increases in proportion to the rises in population and urbanization. Asian countries with greater rural populations produce more organic waste, such as kitchen wastes, and fewer recyclable items, such as paper, metals, and plastics. Reliable data on solid waste compositions are difficult to obtain, and even if available, they are often not updated. We report the most recent waste composition data in some developing Asian countries. We suggest that a better classification system for landfills is needed to address inconsistencies in data for sanitary landfill sites versus waste dumps. We also discuss the information on waste disposal trends and problems associated with general solid waste management in developing Asian countries.  相似文献   

18.
This article focuses on the historical development of landfill technology since the beginning of the nineteenth century in Japan. The regulations and guidelines that form a framework for the technology are reviewed, and the historical background and the current state of Japanese municipal solid waste (MSW) management are described. Through the analysis of data collected from facility leaflets, changes in the leachate treatment system are surveyed. Finally, the concept of the “sustainable bioreactor landfill with low organics” is proposed.  相似文献   

19.
Waste material in municipal landfills can be described as heterogeneous porous media, where flow and transport processes of gases and liquids are combined with local material degradation. This paper deals with the basic formulation of a multiphase flow and transport model applicable to the numerical analysis of coupled transport and reaction processes inside landfills. The transport model treats landfills within the framework of continuum mechanics, where flow and transport processes are described on a macroscopic level. The composition of organic and inorganic matter in the solid phase and its degradation are modelled on a microscopic scale. The degradation model captures the different reaction schemes of various microbial activities. Subsequently, transport and reaction processes have to be coupled, since emissions at the surface and from the drainage layer depend on the flow of leachate and gas, the transport of various substances and heat, and the biodegradation of organic matter. The theoretical considerations presented here are fundamental to the development of numerical models for the simulation of multiphase flow and transport processes inside landfills coupled with biochemical reactions and heat generation. The implicit modelling of leachate and gas flows including growth and decay of micro-organisms are innovative contributions to landfill modelling  相似文献   

20.
The distribution, concentrations in various phases, attenuation and emissions of hazardous substances in Finnish municipal and industrial mixed-waste landfills were investigated in a 5 year field study. Pronounced irregular spatial variation in substance concentrations was observed within, and especially between, the sites. Most frequency distributions of contaminant concentrations in the fills were skewed toward small values. Related norms or reference values were occasionally exceeded. The attenuation of contaminants in the various phases within and around landfills varied according to the substance and site, reflecting retention and removal mechanisms. Lead and zinc were the most easily leached heavy metals in old landfills. The concentration distributions of toxicants in waterborne emissions were dominated by small values, but the maxima exceeded drinking water norms by up to 400 times. In municipal landfill gas, some halomethane concentrations (100 mg Nm−3) exceeded air quality norms. The estimates of contaminant fluxes were minor compared with, for example, industrial emissions. The overall toxic impacts of Finnish landfills thus seem relatively small, but may be important locally and require further study and caution. Associated issues in disposal risk assessment and management are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号