首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Kawamoto  K. Urano 《Chemosphere》1989,18(9-10):1987-1996
Octanol-water partition coefficients and air-water partition coefficients of 10 principal organochlorine pesticides were obtained as basic data for predicting their fate in environment. The octanol-water partition coefficients were in the wide range from 10 to 106 and approximately correlated with the solubilities in water. The air-water partition coefficients were also in the wide range from 10−7 to 10−2, and the values for chloropicrin, dichlorvos, DCIP and quintozene were relatively high.  相似文献   

2.
Wang YH  Wong PK 《Chemosphere》2003,50(4):499-505
Correlation relationships between physico-chemical properties including vapor pressures (P), water solubilities (S), Henry's law constants (H(c)), n-octanol-water partition coefficients (K(ow)), sediment-water partition coefficient (K(pw)) and biotic lipid-water partition coefficient (K(bw), bioconcentration factor) of polychlorinated-dibenzofurans (PCDFs) and their gas chromatographic retention indices (GC-RIs) were established. A model equation between GC-RIs (= RI) and these physico-chemical properties (K) of PCDFs was in a form of log K = aRI2 + bRI + c with correlation coefficients (R2) greater than 0.94, except H(c). These equations were derived from six experimental data (five experimental data for log K(bw)) in each physico-chemical properties of PCDFs reported previously. The values of log P, log S, log H(c), log K(ow), log K(pw) and log K(bw) of PCDFs predicted by these equations based on their GC-RIs in the present study derviated from those calculated by the solubility parameters for fate analysis method in a previous study by 0.49, 0.32, 0.11, 0.34, 0.14 and 0.22 log units, respectively.  相似文献   

3.
Kurz J  Ballschmiter K 《Chemosphere》1999,38(3):573-586
Modelling the environmental fate of persistent organic pollutants like polychlorinated diphenyl ethers (PCDE) requires the knowledge of a number of fundamental physico-chemical properties of these compounds. We report here the physico-chemical properties of 106 PCDEs, which are over 50% of all possible congeners. Vapour pressures P(OL), water solubilities S(H2O), and n-octanol/water partition coefficients K(OW) were determined with chromatographic methods. With these experimental data the Henry's law constants H, gas/water K(GW) and gas/n-octanol K(GO) partition coefficients were calculated. Vapour pressures and water solubilities and n-octanol/water partition coefficients of the PCDEs are close to those of similar groups of organochlorine compounds like polychlorinated biphenyls (PCBs) and dibenzofurans (PCDFs). A similar environmental fate can be predicted and was partially already been observed.  相似文献   

4.
The aqueous solubility of hexafluorobenzene has been determined, at 298.15 K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/anionic composition of the salt. COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict the corresponding aqueous solubilities at conditions similar to those used experimentally. The prediction results showed that the COSMO-RS approach is suitable for the prediction of salting-in/-out effects. The salting-in/-out phenomena have been rationalized with the support of COSMO-RS σ-profiles. The prediction potential of COSMO-RS regarding aqueous solubilities and octanol-water partition coefficients has been compared with typically used QSPR-based methods. Up to now, the absence of accurate solubility data for hexafluorobenzene hampered the calculation of the respective partition coefficients. Combining available accurate vapor pressure data with the experimentally determined water solubility, a novel air-water partition coefficient has been derived.  相似文献   

5.
Solubilizing abilities of aggregates of humic acid (HA) to chlorinated benzenes (CBs) were investigated by means of the apparent water solubility enhancement. Both the water solubilities of 1,4-dichlorobenzene (DCB) and 1,2,4,5-tetrachlorobenzene (TeCB) linearly increased with increasing concentration of HA above the critical micelle concentration (CMC). Such solubilization behavior of CBs for HA was compatible with those for sodium dodecyl sulfate (SDS). These results indicate that the solubilization of CBs in the aqueous solution of HA above the CMC can be interpreted on the basis of the phase-separation model. Thus, the partition coefficients (K(mic)) of CBs between water and HA aggregate phases were calculated by assuming this model. The fact that the K(mic) value increased with increasing K(ow) of CBs supported the partition into the HA aggregate phase by hydrophobic interaction. The estimated K(mic) values of DCB were not dependent on the solution pH. Both K(mic) values of DCB and TeCB for the HA aggregate were found to be 4-5-fold lower than those of SDS.  相似文献   

6.
Environmental fate determining physical properties including their temperature dependence for five nitro musks and for seven polycyclic musks were estimated. The properties evaluated were vapor pressure in a solid and liquid state (PS and PL), solubility in water (S), Henry's law coefficient (H = PL/S) and log octanol-water partition coefficient (log KOW). Gas chromatography for starting values of vapor pressure estimation and HPLC experiments at 5-20 degrees C for comparison of the theoretical versus experimental solubilities in water were performed. The values of temperature (T) dependence coefficients (Ai and Bi) in equations: log (Property)i = Ai - Bi/T were determined. Values of properties were compared with literature-based data, and an example of their use in environmental hazard estimation by fate modeling was given.  相似文献   

7.
Kuramochi H  Maeda K  Kawamoto K 《Chemosphere》2007,67(9):1858-1865
The aqueous solubilities (S(w)) at various temperatures from 283 K to 308 K and 1-octanol/water partition coefficients (K(ow)) for four polybrominated diphenyl ethers (PBDEs: 4,4'-dibromodiphenyl ether (BDE-15), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153)) were measured by the generator column method. The S(w) and K(ow) data revealed the effect of bromine substitution and basic structure on S(w) and K(ow). To estimate the infinite dilution activity coefficients (gamma(i)(w,infinity)) of the PBDEs in water from the S(w) data, enthalpies of fusion and melting points for those compounds were measured with a differential scanning calorimeter. Henry's Law constants (H(w)) of the PBDEs were derived from the determined gamma(i)(w,infinity) and literature vapor pressure data. Some physicochemical characteristics of PBDEs were also suggested by comparing the present property data with that of polychlorinated dibenzo-p-dioxins, brominated phenols and brominated benzenes in past studies. Furthermore, in order to represent different phase equilibria including solubility and partition equilibrium for other brominated aromatic compounds using the UNIFAC model, a pair of UNIFAC group interaction parameters between the bromine and water group were determined from the S(w) and K(ow) data of PBDEs and brominated benzenes. The ability of the determined parameters to represent both properties of brominated aromatics was evaluated.  相似文献   

8.
New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.  相似文献   

9.
10.
Dissolved organic carbon/water distribution coefficients (K(DOC)) were measured for a selection of PCBs with octanol/water partition coefficients (K(OW)) ranging from 10(5.6) to 10(7.5). A solid phase dosing and sampling technique was applied to determine K(DOC) to Aldrich humic acid. This technique is in particular suitable for determining the distribution of very hydrophobic chemicals to complex matrices like humic acids. The K(DOC) values were calculated from the experimental data using a linear model. Determined K(DOC)'s were evaluated in relation to octanol/water partition coefficients of the test compounds, and compared to literature data. Measured K(DOC) values were somewhat higher than literature data, which can probably be attributed to the overestimation of freely dissolved aqueous concentration as a result of incomplete phase separation in other studies, and to the unique character of Aldrich humic acid as a "sorbent" or co-solute or to the fact that Aldrich humic acid is not a typical DOC, and other (adsorption) processes can occur. This study reports DOC distribution coefficients that belong to the highest ones ever measured. In addition, the DOC distribution was discussed in relation to current risk assessment modeling.  相似文献   

11.
Deng H  Peng P  Huang W  Song J 《Chemosphere》2006,64(8):1401-1411
The Xijiang River is the major tributary of the Pearl River, South China, and is the major source water system for more than 4.5 million of urban population and 28.7 million of rural population. We initiated a systematic study on detection and quantification of organic pollutants in both water and suspended particulate matter (SPM) for samples collected in a span of 12 months. Our results showed that total concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) varied from 21.7 to 138 ng l(-1) in water and from 40.9 to 665 microg kg(-1) in SPM. The organic carbon normalized distribution coefficients (K(OC)) computed for the PAHs were correlated well with their octanol-water partition coefficient (K(OW)). The estimated annual loadings of Ant, BaA, and BghiP and the total PAHs in the Xijiang River were 1620, 330, 177 and 19,400 kg, respectively. Further analysis of the data showed that combustion may be the major source of PAHs and that direct leakage of petroleum products may be insignificant.  相似文献   

12.
Monoterpenes are C10H(n)O(n') compounds of natural origin and are potentially environmentally safe substitutes for traditional pesticides. Still, an assessment of their environmental behaviour is required. As a first step in a theoretical study focussing on monoterpenes applied as pesticides to terrestrial environments, soil fate model input-parameters were determined for 20 monoterpenes with widely different structural characteristics. Input-parameters are the water solubility (S(W)), vapour pressure (P), n-octanol-water partition coefficient (K(OW)), atmospheric air and bulk water diffusion coefficients (D(A)air and D(W)water), first order biodegradation rate constants (k), and their temperature dependence. Values for these parameters were estimated or taken from previous experimental work. The quality of the estimations was discussed by focussing on their statistics and by comparison with available experimental data. From these properties, the air-water partition coefficient (K(AW), Henry's Law constant), the interface-water partition coefficient (K(IW)) and the organic matter-water partition coefficient (K(OM)) could be estimated with varying levels of accuracy. In general, little experimental data turned out to be available on biodegradation rate constants and on the temperature dependence of physico-chemical parameters.  相似文献   

13.
The environmental behavior of hydrophobic organic compounds in water is driven by partitioning between dissolved and sorbed phases. Partitioning behavior of a compound is often based on empirical relationships to other properties of the chemical, such as water solubility and octanol-water partition coefficients, but actual partitioning in the environment may differ significantly from such predictions. We conducted intensive studies of the distribution of PCBs in the fresh water portion of the Hudson River, using sensitive capillary-column gas chromatography methods to calibrate and resolve quantitations for 90 PCB congeners in 48 samples at 10 locations. A linear equilibrium model of PCB congener partitioning, when corrected for temperature and suspended-matter organic carbon content, provides a good representation of phase distribution. When particulate-phase concentrations are predicted from dissolved concentrations with a two-phase model, the predictions are unbiased for the majority of samples and the average percent difference between observed and predicted particulate concentrations is ±43 percent. Estimated in situ partition coefficients show systematic differences from partition coefficients predicted from octanol-water partitioning. Partitioning to colloids appears to be a significant component of total concentration for mono- and dichlorobiphenyls, but not for more highly chlorinated congeners.The colloidal fraction may still cause significant overestimation of the bioavailable fraction for more hydrophobic congeners when a two-component model is used.  相似文献   

14.
Krauss M  Wilcke W 《Chemosphere》2005,59(10):1507-1515
The sorption strength of persistent organic pollutants in soils may vary among different soil organic matter (SOM) pools. We hypothesized that polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were unevenly distributed and had different soil organic carbon (SOC)-water partition coefficients (K(OC)) among soil density fractions. We determined the concentrations and K(OC) values of 20 PAHs and 12 PCBs in bulk samples and three density fractions (light, <2.0, medium, 2.0-2.4, and heavy, >2.4 g cm(-3)) of 11 urban topsoils (0-5 cm) from Bayreuth, Germany. The K(OC) values were determined using sequential extraction with methanol-water mixtures (35% and 65% methanol) at 60 degrees C. The sum of 20 PAH concentrations in bulk soil ranged 0.4-186 mg kg(-1), and that of 12 PCB concentrations 1.2-158 microg kg(-1). The concentrations of all PAHs and PCBs decreased in the order light>medium>heavy fraction. When normalized to the SOC concentrations, PAH concentrations were significantly higher in the heavy than in the other density fractions. The K(OC) values of the PAHs in density fractions were 3-20 times higher than those of the PCBs with similar octanol-water partition coefficients (K(OW)). The K(OC) values of individual PAHs and PCBs varied up to a factor of 1000 among the studied soils and density fractions. The K(OC) values of 5- and 6-ring PAHs tended to be highest in the heavy fraction, coinciding with their enrichment in this fraction. For the other PAHs and all PCBs, the K(OC) values did not differ among the density fractions. Thus, there is no relationship between sorption strength and distribution among density fractions, indicating that density fractionation is not a suitable tool to distinguish among differently reactive PAH and PCB pools in soils.  相似文献   

15.
Meylan WM  Howard PH 《Chemosphere》2005,61(5):640-644
The octanol-air partition coefficient (K(OA)) is useful for predicting the partitioning behavior of organic compounds between air and environmental matrices such as soil, vegetation, and aerosol particles. At present, experimentally determined K(OA) values are available for only several hundred compounds. Therefore, the ability to estimate K(OA) is necessary for screening level evaluation of most chemicals. Although it is possible to estimate K(OA) from the octanol-water partition coefficient (K(OW)) and Henry's law constant (HLC), various concerns have been raised in regard to the usability of this estimation methodology. This work examines the accuracy and usability of K(OW) and HLC in application to a comprehensive database set of K(OA) values for screening level environmental assessment. Results indicate that K(OW) and HLC can be used to accurately predict K(OA) even when estimated K(OW) and HLC values are used. For an experimental dataset of 310log K(OA) values for different compounds, the K(OW)-HLC method was statistically accurate as follows: correlation coefficient (r2): 0.972, standard deviation: 0.526, absolute mean error: 0.358 using predominantly experimental K(OW) and HLC values. When K(OW) and HLC values were estimated (using the KOWWIN and HENRYWIN programs), the statistical accuracy was: correlation coefficient (r2): 0.957, standard deviation: 0.668, absolute mean error: 0.479.  相似文献   

16.
17.
Solubilities in fats ranging from 0.88 g l?1 to completely miscible are reported for twelve organic chemicals. Comparison of these and other literature values with bioconcentration factors and octanol: water partition coefficients indicate that fat solubility is not a reliable predictor for either parameter. The results for the solubilities of seven chemicals in eight different fats cover a restricted range, indicating that the composition of the fat is not a critical parameter in determining the solubility.  相似文献   

18.
Propylene glycol ethers (PGEs) are comprised of mono-, di- and tri-PGEs and several of their acetate esters. The nature of the range of applications that use PGEs suggests that there is a potential for both intentional and unintentional entry of the materials into the environment. Selected physical/chemical properties, fate characteristics, aquatic toxicity data and calculated environmental concentrations were used to assess potential risks from the manufacture, handling, use, and disposal of PGEs. In general, the PGEs are low to moderately volatile, have high aqueous solubilities, low octanol-water partition coefficients (Kow), and bioconcentration factor values of <10, which indicate they are unlikely to accumulate in aquatic food chains. Both abiotic and biological degradation processes reduce environmental concentrations of PGEs. In air, vapor-phase PGEs react with photo-chemically produced hydroxyl radicals and have half-lives ranging from 5.5 to 34.4 h. A variety of ready and inherent biodegradation test methods, as well as tests that simulate biodegradation in wastewater treatment plants, surface water and soil have been conducted on PGEs. Significant aerobic biodegradation was generally observed, with a range of biodegradation half-lives on the order of 5-25 d. Acute aquatic toxicity studies with PGEs resulted in LC50 values ranging from approximately >100 to >20,000 mg/l for freshwater fish, the pelagic invertebrate Daphnia magna, green algae Selenastrum capricornutum (now called Pseudokirchneriella capricornutum) and bacteria. Level 3 multi-media modeling (EQC model of Mackay) was used to simulate regional-scale concentrations of PGEs in air, soil, water, and sediment. Toxicity thresholds were then compared with regional-scale water, soil and sediment concentrations to determine hazard quotients. Based upon this analysis, concentrations of PGEs are unlikely to pose adverse risks to the environment.  相似文献   

19.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

20.
Exposure of humans to chemicals in beef or milk is part of almost all risk evaluation procedures carried out to reduce emissions or to remediate sites. Concentrations of substances in these livestock products are often estimated using log-log regressions that relate the biotransfer factor BTF to the octanol-water partition ratio K(ow). However, the correctness of these empirical correlations has been questioned. Here, we compare them to the mechanistic model OMEGA that describes the distribution of substances in organisms by integrating theory on chemical fugacity and biological allometry. OMEGA has been calibrated and validated on thousands of laboratory and field data, reflecting many chemical substances and biological species. Overall fluxes of water, food, tissue (growth), milk and stable substances calculated by OMEGA are within a factor of two from independent data obtained in experiments. Rate constants measured for elimination of individual compounds of a recalcitrant nature vary around the level expected from the model for output to faeces and milk. Both data and model suggest that biotransfer BTF of stable substances to beef and milk is independent of the octanol-water partition ratio K(ow) in the range of 10(3)-10(6). This contradicts empirical regressions including stable and labile compounds. As expected, levels of labile substances vary widely around a tentative indication derived from the model. Transformation and accumulation of labile substances remains highly specific for the chemical and organism concerned but depends weakly on the octanol-water partition ratio K(ow). Several possibilities for additional refinement are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号