首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The adsorption–desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam?>?Loam?>?Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r?=?0.910) and clay content (r?=?0.746); but, negative correlation with soil pH (r = ?0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam?>?clayey loam?>?loam . Hysteresis (H) was observed in all the three soils with H?<?1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH ?7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH ? 7.89, OC ? 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption–desorption and leaching behavior of flucetosulfuron in soils.  相似文献   

2.
Leaching of acidic herbicides (2,4-D, flumetsulam, and sulfentrazone) in soils was estimated by comparing the original and modified AF (Attenuation Factor) models for multi-layered soils (AFi). The original AFi model was modified to include the concept of pH-dependence for Kd (sorption coefficient) based on pesticide dissociation and changes in the accessibility of soil organic functional groups able to interact with the pesticide. The original and modified models, considering soil and herbicide properties, were applied to assess the leaching potential of selected herbicides in three Brazilian soils. The pH-dependent Kd values estimated for all three herbicides were observed to be always higher than pH-independent Kd values calculated using average Koc data, and therefore the original AFi model overestimated the overall leaching potential for the soils studied.  相似文献   

3.
Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31–22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94–83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (Kf.1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g?1) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92).  相似文献   

4.
5.
A study in small outdoor lysimeters was carried out to determine the leaching of the herbicides tebuthiuron and diuron in different soil types, using undisturbed soil columns. Soil sorption and degradation for both herbicides were also studied in the laboratory. The multi-layered AF (Attenuation Factor) model was evaluated for predicting the herbicides leaching in undisturbed soil columns. Tebuthiuron leached in greater amounts than diuron in both soils. Sorption was well represented by linear and Freundlich equations, however parameters from the linear equations were used in the AF model. In general, both herbicides presented very low sorption, with diuron presenting lower values of sorption coefficient than tebuthiuron in the two soils. Chromatographic data indicated rapid late degradation of diuron and tebuthiuron in both soil types at two different depths. Simple exponential equation was not able to represent degradation, thus a bi-exponential equation was used, and some model adjusting was needed. Average measured amounts of each herbicide were compared with amounts predicted by the multi-layered-soil AF model. The AF model was able to predict leaching amounts in the sandy soil, especially for diuron, however it did not perform well in the clayey soil.  相似文献   

6.
The sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolid-inimine ) (IMI) and its metabolites imidacloprid-urea (1-[(6-chloro-3-pyridinyl)-methyl]-2-imidazol-idinone) (IU), imidacloprid-guanidine (1-[(6-chloro-3-pyridinyl)-methyl]-4,5-dihydro-1H-imidazol-2-amine) (IG), and imidacloprid-guanidine-olefin (1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75-134) > or = IGO (2.87-72.3) > IMI (0.55-16.9) > IU (0.31-9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2 = 0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non-tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

7.
Abstract

The sorption of imidacloprid (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐N‐nitro‐2‐imidazolid‐inimine) (IMI) and its metabolites imidacloprid‐urea (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐2‐imidazol‐idinone) (IU), imidacloprid‐guanidine (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐4,5‐dihydro‐lH‐imidazol‐2‐amine) (IG), and imida‐cloprid‐guanidine‐olefin ( 1 ‐[(6‐chloro‐3‐pyridinyl)methyl]‐lH‐imidazol‐2‐amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75–134) > IGO (2.87–72.3) > IMI (0.55 ‐16.9) > IU (0.31–9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2=0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non‐tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

8.
Xu F  Liang X  Lin B  Su F  Schramm KW  Kettrup A 《Chemosphere》2002,48(1):149-156
The influence of methanol in methanol-water mixed eluents on the capacity factor (k'), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Short-term exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - S(phi), could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w) had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process.  相似文献   

9.
Sorption of fipronil and its metabolites on soils from South Australia   总被引:1,自引:0,他引:1  
This paper reports on the sorption of fipronil [(+/-)-5-amino-1-(2,6-dichloro-alpha,alpha,alpha-trifluoro-p-tolyl)-4-trifluoromethyl-sulfinylpyrazole-3-carbonitrile] and its two main metabolites, desulfynil and sulfide derivatives on a range of soils from South Australia. The Freundlich sorption coefficient (Kf) values for fipronil on the soils ranged from 1.94 to 4.84 using a 5% acetonitrile/water mixture as the soil solution. Its two metabolites had a higher sorption affinity for soils, with Kf values ranging from 11.09 to 23.49 for the sulfide derivative and from 4.70 to 11.77 for the desulfynil derivative. Their sorption coefficients were found to be better related to the soil organic carbon than clay content. The presence of cosolvents in soil solutions had a significant influence on the sorption of fipronil. The Freundlich sorption coefficients showed a log linear relationship with the fractions of both acetonitrile and methanol in solutions. The sorption coefficient of fipronil on Turretfield soil in the aqueous solution was estimated to be from 13.80 to 19.19. Methanol had less effect on the sorption of fipronil than acetonitrile. The Kd values for fipronil on the eight soils using a 5% methanol/water mixture were from 5.34 to 13.85, which reflect more closely the sorption in the aqueous solution. The average Koc value for fipronil on the eight South Australian soils was calculated to be 825+/-214.  相似文献   

10.
Phosphorus and nitrogen leached from high-porosity golf greens can adversely affect surface water and groundwater quality. Greenhouse and field lysimeter experiments were carried out to determine the effects of eight fertilizer sources on P and N leaching from simulated golf greens. Phosphorus appeared in the leachate later than nitrate-N, and the highest concentrations were for the soluble 20-20-20 and the 16-25-12 starter fertilizers. The other six sources resulted in lower P concentrations. The soluble 20-20-20 and the 16-25-12 sources each resulted in 43% of the added P eluting in the leachate, whereas the others varied from 15 to 25%. For nitrate-N the lowest cumulative mass was for the controlled-release 13-13-13 and sulfur-coated urea. A higher percentage of applied P than applied N leached from both field and greenhouse lysimeters. However, the amounts of P leached for the field lysimeters were lower than for the greenhouse columns.  相似文献   

11.
T Viraraghavan  K Slough 《Chemosphere》1999,39(9):1487-1496
Batch kinetic and isotherm studies were carried out to determine the adsorptive characteristics of peat and bentonite mixtures for pentachlorophenol, and to examine the hydraulic conductivity of peat-bentonite mixtures to determine if they are applicable for use as cutoff barriers. Batch kinetic studies showed that over 90% of PCP was removed from water spiked with approximately 1 mg/l of PCP using a peat-bentonite (5%) mixture. The equilibrium time was 8 hours. The optimum pH range for adsorption of PCP by the peat-bentonite mixture was found to be 3-3.5. Batch isotherm studies showed that the adsorption of PCP by the peat-bentonite mixture from aqueous solution was best described by the Freundlich isotherm equation. Batch adsorption studies using various ratios of bentonite in the mixture showed that the adsorption of PCP decreased linearly with increased amount of bentonite in the mixture, indicating that adsorption of PCP by the peat moss portion of the mixture was the dominant process. The inverse of the hydraulic conductivity was found to increase exponentially with an increase in the bentonite content of the mixture over the range studied. The minimum hydraulic conductivity observed was 3.3 x 10(-7) cm/s for a 50% peat-50% bentonite mixture. Peat-bentonite mixtures can be used to successfully remove PCP from aqueous media and can be used effectively as a barrier to attenuate the migration of PCP through soil and groundwater systems.  相似文献   

12.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

13.
The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

14.
Environmental Science and Pollution Research - Manganese released from the piled manganese ore wastes is a great threat to the local ecosystem and human health. The mechanism and dynamic...  相似文献   

15.
16.
Xu F  Liang X  Lin B  Su F  Schramm KW  Kettrup A 《Chemosphere》2002,48(5):553-562
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) XYZ0 + mV(I)/100 + spi + bbetam + aalpham, was applied to analyze capacity factors (k'), soil organic partition coefficients (Koc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control logKoc, log P, and logk' (on soil and on C18) are the solute size (V(I)/100) and hydrogen-bond basicity (betam). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpham). Log k' on soil and log Koc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C18 and logP have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, logk' values on C18 have good correlations with logP (r > 0.97), while logk' values on soil have good correlations with logKoc (r > 0.98). Two Koc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC.  相似文献   

17.
Environmental Science and Pollution Research - The use of organic and inorganic phosphorus (P)&nbsp;fertilizers in agricultural soils is very common, and few studies have been conducted to...  相似文献   

18.
应用矿化垃圾吸附处理实际渗滤液中的COD和氨氮,分别研究了粒径、投加量、pH对吸附效果的影响,并在最佳吸附条件下对吸附过程进行动力学分析。结果表明,反应360min时,COD吸附达到平衡,去除率达到69.01%,单位吸附量为87.91mg/g;反应510min时,氨氮吸附达到平衡,去除率达到71.45%,单位吸附量为16.86mg/g,这表明用矿化垃圾作为吸附剂吸附垃圾渗滤液中的COD和氨氮是可行的;用COD和氨氮动力学数据拟合吸附过程,均符合伪二级动力学方程。  相似文献   

19.
The Nitrate Leaching and Economic Analysis Package (NLEAP) model was used to evaluate effects of climate and N fertility on nitrate leaching from a 3-yr field experiment of continuous corn (Zea mays L.). Half of the plots were randomly chosen to be either nonirrigated or irrigated (based upon calculated potential evapotranspiration). Three replications of nitrogen (N) fertility (56, 112 and 224 kg ha−1) were used. Soil was a Hecla sandy loam to loamy sand (Pachic Udic Haploboroll). Soil and climate data were from the upper Midwest U.S.A. database for NLEAP. On-site data were used in the model when available.This study shows that NLEAP is capable of integrating data collected for nonirrigated and irrigated conditions on sandy soil for a wide range of N treatments and predicting the nitrate available for leaching (NAL). Precipitation distribution and amount were different in each year. Calculated NAL provided an excellent indicator of potential nitrate leaching hazard. NLEAP output showed that leaching of residual N on this sandy soil is very sensitive to early-spring precipitation. The NLEAP model provided valuable insights concerning effects of climate and N and irrigation management on N leaching. To obtain optimum yields while minimizing nitrate leaching, this study indicates the need to use soil and plant-tissue testing, post-emergence N-fertilizer application, and modem irrigation-scheduling technology. Also, use of the NLEAP model along with field-plot experiments provide additional important information concerning timing of N-leaching events relative to climate and an additional assessment of the effectiveness of fertilizer-N management decisions.  相似文献   

20.
在装有Ti/RuO2-IrOz-TiO2阳极、Ti阴极的电解浮选槽中进行了活性污泥固液分离的研究.考察了水力停留时间对浮选效果的影响,研究了电解产生的微气泡对悬浮物浮选的动力学.研究表明,电解浮选是高效的固液分离单元,悬浮物的去除遵循一级动力学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号