共查询到17条相似文献,搜索用时 46 毫秒
1.
青岛市夏季臭氧浓度水平高且污染事件频发,开展臭氧污染过程和非污染时期的挥发性有机物(VOCs)及其臭氧生成潜势(OFP)的精细化来源解析研究,对于有效降低沿海城市的大气臭氧污染,持续改善环境空气质量将会发挥重要的作用.因此,利用青岛市2020年夏季(6~8月)小时分辨率的在线VOCs监测数据,分析臭氧污染过程和非臭氧污染时期环境VOCs的化学特征,并通过正定矩阵因子分解(PMF)模型进行了环境VOCs及其OFP的精细化来源解析研究.结果表明,青岛市夏季环境ρ(TVOCs)平均值为93.8μg·m-3,臭氧污染过程相较于非臭氧污染时期TVOCs浓度上升了49.3%,其中芳香烃浓度增加最显著,增加了59.7%.夏季环境VOCs总的OFP达到246.3μg·m-3,臭氧污染过程相较于非臭氧污染时期环境VOCs的总OFP增加了43.1%;其中烷烃增加最多,增加了58.8%.间-乙基甲苯和2,3-二甲基戊烷是臭氧污染过程中OFP增加幅度最大的物种.青岛市夏季环境VOCs的主要贡献源为柴油车(11.2%)、溶剂使用(4.7%)、液化石油气及天然气(27.... 相似文献
2.
3.
臭氧已成为影响我国环境空气质量的重要污染物之一,准确解析环境臭氧及其前体物VOCs的关键源类及其贡献对于有效防控臭氧污染具有重要作用.因此,利用光化学年龄参数方法估算了青岛胶州市2021年1月1日至2月28日在线VOCs监测数据的初始浓度,矫正环境VOCs物种的光化学损耗;并利用正定矩阵因子分解(PMF)和臭氧生成潜势(OFP)模型进行了环境VOCs及其OFP来源解析研究,以期为青岛市环境臭氧污染的防控提供数据支撑.结果表明,研究期间青岛市环境ρ(TVOCs)和OFP的平均值分别为65.9μg·m-3和176.7μg·m-3;其中丙烷浓度(12.4μg·m-3)和占比(18.9%)最高,而间/对-二甲苯的OFP(24.6μg·m-3)及占比(13.9%)最高.研究期间TVOCs的初始浓度为153.1μg·m-3,其光化学损耗率达到63.8%.烯烃是光化学损耗率(92.1%)最高的VOCs物种,其中异戊二烯的光化学损耗率达到98.6%,明显高于其它VOCs物种.基于初始浓度的来源... 相似文献
4.
采用GC5000在线气相色谱仪,于2019年和2020年夏季6~8月分别对郑州市城区中大气环境挥发性有机化合物(VOCs)进行监测,探究了VOCs的污染特征,并重点利用比值分析,PMF受体模型和条件概率函数(CPF)模型对比研究了其来源贡献.结果表明,2019年和2020年夏季ρ(VOCs)平均值分别为65.7 μg·m-3和71.0μg·m-3.2019年烷烃占比逐月变化幅度不大,占比在55%左右,芳香烃整体呈上升趋势,烯烃呈下降趋势;前10物种占总VOCs的65.5%,主要物种依次为异戊烷、乙烷、丙烷、甲苯、正丁烷和间/对-二甲苯等.2020年烷烃和烯烃占比呈逐月升高趋势,芳香烃呈逐月降低趋势;前10物种占总VOCs的71.1%,主要物种依次为乙烷、乙烯、丙烷、异戊烷、正丁烷、甲苯和间/对-二甲苯等.2019年夏季OFP平均值为224.9 μg·m-3,其中芳香烃对OFP贡献率逐月升高,烯烃逐月降低;对OFP贡献的物种主要为间/对-二甲苯、异戊二烯、反式-2-丁烯、甲苯和乙烯等.2020年夏季OFP平均值为243.6 μg·m-3,其中芳香烃对OFP贡献逐月降低,烯烃逐月升高;对OFP贡献的物种主要为乙烯、间/对-二甲苯、异戊二烯、甲苯和间-乙基甲苯等.PMF和CPF模型解析表明,2019年对VOCs贡献较大的是溶剂使用源和油气挥发源,贡献率分别为36.7%和25.1%,其对OFP贡献也较大,分别为39.9%和23.3%,需重点关注西南部区域.2020年对VOCs贡献较大的仍为溶剂使用源和油气挥发源,贡献率分别为24.9%和22.5%;对OFP贡献较大的为溶剂使用源和机动车尾气排放源,贡献率分别为33.6%和22.9%,需重点关注北部和南部区域.因此,今后应重点关注溶剂使用、机动车尾气排放和油气挥发源的排放,尤其监测点位的西南部、北部和东南部区域污染源. 相似文献
5.
精细化的挥发性有机物(VOCs)组分特征和来源分析,可以为科学有效地进行臭氧(O3)污染防控提供支持.利用2020年夏季7~8月北京城区点位监测的小时分辨率VOCs在线数据,分析高O3浓度时段和低O3浓度时段环境受体中VOCs化学特征和臭氧生成潜势(OFP),并利用正定矩阵因子分解(PMF)模型进行精细化源解析.结果表明,观测期间监测点φ[总大气挥发性有机物(TVOCs)]平均值为12.65×10-9,高O3时段和低O3时段φ(TVOCs)平均值分别为13.44×10-9和12.33×10-9,OFP分别为107.6μg·m-3和99.2μg·m-3.观测期间O3生成受VOCs控制,芳香烃的反应活性最高,对OFP贡献排名前三的组分均为异戊二烯、甲苯和间/对-二甲苯.低O3时段环境受体中VOCs的主要来源包括汽车排放(26.4%)、背景排放(15.7%)、溶剂使用(13.0%)、汽修(12.8%)、二次生成源(9.7%)、生物质燃烧(6.1%)、印刷行业(5.7%)、液化天然气(LNG)燃料车(5.5%)和植被排放(5.0%),其中背景排放、二次生成和印刷行业源在近年来北京VOCs源解析研究中少有讨论.高O3时段汽修源和二次生成源贡献分别较低O3时段上升了3.4%和2.6%,汽车排放仍是北京城区最主要的VOCs贡献源.植被排放源从07:00开始上升,在午后达到最高;背景排放源的贡献变化较小;汽车排放和LNG燃料车排放源呈现早晚高峰特征,下午时贡献相对较低. 相似文献
6.
2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)µg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。
相似文献7.
近年来,我国城市的臭氧(O3)污染问题日益突出.挥发性有机物(VOCs)是O3生成的重要前体物,因此,了解VOCs主要特征以及来源对控制O3污染具有重要意义.于2019年5~9月在淄博市开展了在线VOCs观测,共计监测56个物种.观测期间,O3超标率为67.8%,ρ(VOCs)平均值为140.71μg·m-3,O3超标日的VOCs浓度为非超标日的1.04倍.从VOCs组分结构上看,浓度从高到低依次为:芳香烃>烷烃>烯烃>炔烃.其中1,3,5-三甲苯、邻-乙基甲苯、 1-丁烯和正己烷为超标日和非超标日排放较高的物种.臭氧生成潜势(OFP)中芳香烃和烯烃贡献较大.由PMF源解析结果得出,该城区VOCs来源主要包括机动车源、固定燃烧源、溶剂使用源、工艺过程源和天然植物源,其中机动车源为该城区最主要的VOCs来源.此外,O3超标日的机动车源占比为32.3%,固定燃烧源占比为24.2%,相比于非超标日分别升高了3.3%和6.9... 相似文献
8.
9.
基于聊城市2021年6月挥发性有机物(VOCs)和臭氧(O3)在线监测数据,系统分析了O3污染日和清洁日VOCs的浓度水平、组成特征、日变化特征和O3生成潜势(OFP),通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)识别了VOCs的潜在源区,利用特征物种比值和正定矩阵因子分解(PMF)模型对VOCs来源进行了解析.结果表明,聊城市2021年6月O3污染日和清洁日ρ(VOCs)小时均值分别为(115.38±59.12)μg·m-3和(88.10±33.04)μg·m-3,各类别VOCs浓度水平在污染日和清洁日的大小均表现为:含氧挥发性有机物(OVOCs)>烷烃>卤代烃>芳香烃>烯烃>炔烃>有机硫.污染日和清洁日浓度差值较大的VOCs物种均出现在二者VOCs浓度小时均值贡献前10物种中.总VOCs、烷烃、炔烃、芳香烃、卤代烃和有机硫浓度日变化趋势表现为日间低于夜间,OVOCs浓度日变化呈现出白天高,夜间低的特... 相似文献
10.
为探究重污染天气污染过程VOCs化学组分特征及主要来源,利用2019~2020年天津市11次重污染天气预警及应急响应前后逐小时VOCs在线数据,分析环境受体中VOCs化学组分变化特征,并利用正定矩阵因子分解(PMF)模型及二元条件概率函数(CBPF)解析其来源.结果表明,在重污染天气预警及应急响应期间,观测点φ(VOCs)均值为35.7×10-9.冬季应急响应期间VOCs体积分数较秋季有所增加,其中烯烃增加48%,烷烃增加4%.重污染天气预警及应急响应期间污染累积阶段,不同VOCs组分其变化幅度有明显差异,橙色预警期间,烷烃占比增加36%,乙炔占比下降32%;黄色预警期间,烷烃占比增长14%,乙炔占比下降5%.重污染天气预警及应急响应期间,机动车排放源、天然气挥发源及溶剂使用源是环境受体中VOCs主要贡献源,贡献率分别为17.5%、 15.4%和15.2%.相比应急响应前,黄色预警期间机动车排放源和柴油挥发源对环境受体中VOCs的贡献率分别减少2.0%~5.5%和2.1%~6.6%,溶剂使用源贡献率减少0.2%~2.4%;橙色预警期间,机动车排放源贡献率减少0.1%~8.3%,溶剂使用源贡献率减少0.5%~6.2%. 相似文献
11.
近年来我国中部地区臭氧污染问题日益凸显,而挥发性有机物(VOCs)作为近地面臭氧生成的关键前体物,有关其来源研究相较于我国东部地区相对欠缺.为了解我国中部地区VOCs污染特征及其来源,本研究于2017年2—3月在豫鄂陕三省交界处的河南省南阳市南阳理工学院站点开展了为期1个月的VOCs在线监测.测量结果显示,观测期间总VOCs平均浓度为(37.4±18.5)×10~(-9).与国内外已有研究的VOCs测量结果相比,本研究中烷烃、烯烃和炔烃的浓度处于中等偏上水平,而芳香烃浓度则较低.烯烃对臭氧潜势的贡献最高(37%),其次是芳香烃(28%).乙烯、二甲苯、甲苯、丙烯和C4~C5烷烃是最重要的活性组分.利用正交矩阵因子分析(PMF)解析出4个因子,分别是天然气/液化石油气使用+背景、交通排放、溶剂涂料使用和燃煤+生物质燃烧.观测期间南阳理工学院站点对VOCs浓度贡献最高的是燃煤+生物质燃烧因子,平均贡献率为35%,其次是交通排放因子(25%)、天然气/LPG使用+背景(23%)和溶剂涂料使用(17%).研究结果对于认识我国中部地区VOCs来源结构,进而开展VOCs和臭氧防治具有重要意义. 相似文献
12.
13.
14.
为研究兰州市夏季大气挥发性有机物(VOCs)污染特征和来源,采用实时在线监测仪器TH-300B (GC-MS/FID)等多种设备联用,于2021年7月开展为期1个月的综合观测.结果表明,监测期间总挥发性有机物ρ(TVOCs)为99.77μg·m-3,烷烃占比最大,其次是芳香烃和含氧挥发性有机物(OVOCs),烯炔烃和卤代烃占比较小,各组分浓度呈现早晚高,中午低的日变化特征.VOCs臭氧生成潜势(OFP)前10种物质贡献率占57.3%,二次有机气溶胶(SOA)生成潜势前10种物质贡献率占93.10%,以芳香烃和高碳烷烃为主,其中,甲苯和间/对-二甲苯对OFP和SOA贡献最大.采用正交矩阵因子分解法(PMF)进行污染来源解析,其中工业溶剂源(22.25%)、油漆涂料源(21.70%)和机动车尾气源(16.25%)是研究区环境空气中VOCs的主要来源;基于污染源排放清单法,2017年兰州市VOCs排放量为94761.6 t,主要来自溶剂使用源和移动源,贡献率分别为56.70%和18.03%.因此解决兰州大气复合污染问题,实现O3和PM2.5协同控制,应以工业溶剂排放和机动车管控为主,重点减少VOCs中甲苯和间/对-二甲苯等芳香烃化合物排放. 相似文献
15.
挥发性有机化合物(VOCs)是臭氧和颗粒物等的重要前体物,对空气质量的影响尤为显著.为研究连云港市VOCs的组分特征和来源,选择4个国控点开展春、夏和秋季典型日的VOCs采样和分析,计算VOCs不同组分对臭氧生成的影响,利用正交矩阵因子分解法(PMF)解析VOCs的来源.结果表明,春季VOCs浓度为27.46×10-9~40.52×10-9,夏季为45.79×10-9~53.45×10-9,秋季为38.84×10-9~46.66×10-9;含氧化合物的浓度占比为41%~48%,在各个季节均为最高,浓度水平较高的VOCs物种是丙酮、丙烯醛和丙醛等,异戊二烯的浓度在夏季较高;一般而言VOCs浓度09:00高于13:00,其中丙烯醛、乙烯和二氯甲烷的变化较大;含氧化合物的臭氧生成潜势(OFP)最高,其次是芳香烃和烯烃类,烷烃的OFP最小,OFP较高的VOCs物种是丙烯醛、丙烯和乙烯等;影响连云港市VOCs的来源主要有工业源(49%)、溶剂使用源(23%)、交通源... 相似文献
16.
2012年8月利用在线气相色谱仪对南京市北郊大气环境中的挥发性有机物(VOCs)进行连续监测,分析VOCs时间变化规律,并利用PMF(positive matrix factorization)受体模型和CPF(conditional probability function)方法对其来源进行解析.结果表明,南京市北郊夏季VOCs日变化呈双峰分布,小时平均体积分数为(33.84±27.77)×10-9,夜间高于昼间.其中含量最高的是烷烃,其次是烯烃和芳烃,分别占到总挥发性有机物(TVOCs)的49.3%、24.4%和18.5%,乙炔占7.8%.南京市北郊夏季VOCs主要来源有5个,分别是交通尾气、燃料挥发、工业排放、有机溶剂挥发和植物排放源,各自对TVOCs贡献为33.1%、25.8%、23.2%、8.1%和9.7%.烷烃主要来源于汽车尾气排放、工业排放和燃料挥发,贡献百分比分别为23.7%、35.3%和31.3%;烯烃主要来源于燃料挥发、工业排放和汽车尾气排放,分别占41.1%、18.4%和24.3%;对芳烃贡献最大的为汽车尾气排放,占到49.2%,其次是有机溶剂挥发排放占30.8%. 相似文献
17.
利用GC5000在线气相色谱仪于2018年4月15日~5月15日对郑州市城区环境大气挥发性有机物(VOCs)进行监测,开展其污染特征、臭氧生成潜势(OFP)和来源解析研究.结果表明,监测期间,郑州市春季VOCs平均体积分数为40.26×10-9,非污染日和污染日VOCs平均体积分数分别为35.82×10-9和44.12×10-9,污染日相较非污染日增长23%;VOCs物种对OFP的贡献表现为烯烃>芳香烃>烷烃>炔烃;源解析结果显示监测期间郑州市VOCs主要来源是LPG源(66.05%)、机动车源(47.39%)、工业溶剂源(37.51%)、燃烧源(37.80%)和植物排放源(11.25%),且污染日的LPG源和植物排放源的贡献率较非污染日增长22.92%和68.50%. 相似文献