首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 75 毫秒
1.
青岛市夏季臭氧浓度水平高且污染事件频发,开展臭氧污染过程和非污染时期的挥发性有机物(VOCs)及其臭氧生成潜势(OFP)的精细化来源解析研究,对于有效降低沿海城市的大气臭氧污染,持续改善环境空气质量将会发挥重要的作用.因此,利用青岛市2020年夏季(6~8月)小时分辨率的在线VOCs监测数据,分析臭氧污染过程和非臭氧污染时期环境VOCs的化学特征,并通过正定矩阵因子分解(PMF)模型进行了环境VOCs及其OFP的精细化来源解析研究.结果表明,青岛市夏季环境ρ(TVOCs)平均值为93.8μg·m-3,臭氧污染过程相较于非臭氧污染时期TVOCs浓度上升了49.3%,其中芳香烃浓度增加最显著,增加了59.7%.夏季环境VOCs总的OFP达到246.3μg·m-3,臭氧污染过程相较于非臭氧污染时期环境VOCs的总OFP增加了43.1%;其中烷烃增加最多,增加了58.8%.间-乙基甲苯和2,3-二甲基戊烷是臭氧污染过程中OFP增加幅度最大的物种.青岛市夏季环境VOCs的主要贡献源为柴油车(11.2%)、溶剂使用(4.7%)、液化石油气及天然气(27....  相似文献   

2.
本文利用天津市南开大学津南校区大气环境综合观测站的臭氧及其前体物(VOCs 和NOx)、气象参数等在线监测仪器,获取了 2018 年夏季(6~8 月)小时分辨率的数据信息;分析臭氧及其前体物的相互关系及变化特征;根据光化学年龄计算出VOCs的初始浓度对其日间(06:00~24:00)VOCs体积分数的光化学损耗进行修正...  相似文献   

3.
臭氧已成为影响我国环境空气质量的重要污染物之一,准确解析环境臭氧及其前体物VOCs的关键源类及其贡献对于有效防控臭氧污染具有重要作用.因此,利用光化学年龄参数方法估算了青岛胶州市2021年1月1日至2月28日在线VOCs监测数据的初始浓度,矫正环境VOCs物种的光化学损耗;并利用正定矩阵因子分解(PMF)和臭氧生成潜势(OFP)模型进行了环境VOCs及其OFP来源解析研究,以期为青岛市环境臭氧污染的防控提供数据支撑.结果表明,研究期间青岛市环境ρ(TVOCs)和OFP的平均值分别为65.9μg·m-3和176.7μg·m-3;其中丙烷浓度(12.4μg·m-3)和占比(18.9%)最高,而间/对-二甲苯的OFP(24.6μg·m-3)及占比(13.9%)最高.研究期间TVOCs的初始浓度为153.1μg·m-3,其光化学损耗率达到63.8%.烯烃是光化学损耗率(92.1%)最高的VOCs物种,其中异戊二烯的光化学损耗率达到98.6%,明显高于其它VOCs物种.基于初始浓度的来源...  相似文献   

4.
采用GC5000在线气相色谱仪,于2019年和2020年夏季6~8月分别对郑州市城区中大气环境挥发性有机化合物(VOCs)进行监测,探究了VOCs的污染特征,并重点利用比值分析,PMF受体模型和条件概率函数(CPF)模型对比研究了其来源贡献.结果表明,2019年和2020年夏季ρ(VOCs)平均值分别为65.7 μg·m-3和71.0μg·m-3.2019年烷烃占比逐月变化幅度不大,占比在55%左右,芳香烃整体呈上升趋势,烯烃呈下降趋势;前10物种占总VOCs的65.5%,主要物种依次为异戊烷、乙烷、丙烷、甲苯、正丁烷和间/对-二甲苯等.2020年烷烃和烯烃占比呈逐月升高趋势,芳香烃呈逐月降低趋势;前10物种占总VOCs的71.1%,主要物种依次为乙烷、乙烯、丙烷、异戊烷、正丁烷、甲苯和间/对-二甲苯等.2019年夏季OFP平均值为224.9 μg·m-3,其中芳香烃对OFP贡献率逐月升高,烯烃逐月降低;对OFP贡献的物种主要为间/对-二甲苯、异戊二烯、反式-2-丁烯、甲苯和乙烯等.2020年夏季OFP平均值为243.6 μg·m-3,其中芳香烃对OFP贡献逐月降低,烯烃逐月升高;对OFP贡献的物种主要为乙烯、间/对-二甲苯、异戊二烯、甲苯和间-乙基甲苯等.PMF和CPF模型解析表明,2019年对VOCs贡献较大的是溶剂使用源和油气挥发源,贡献率分别为36.7%和25.1%,其对OFP贡献也较大,分别为39.9%和23.3%,需重点关注西南部区域.2020年对VOCs贡献较大的仍为溶剂使用源和油气挥发源,贡献率分别为24.9%和22.5%;对OFP贡献较大的为溶剂使用源和机动车尾气排放源,贡献率分别为33.6%和22.9%,需重点关注北部和南部区域.因此,今后应重点关注溶剂使用、机动车尾气排放和油气挥发源的排放,尤其监测点位的西南部、北部和东南部区域污染源.  相似文献   

5.
孟祥来  孙扬  廖婷婷  张琛  张成影 《环境科学》2022,43(9):4484-4496
精细化的挥发性有机物(VOCs)组分特征和来源分析,可以为科学有效地进行臭氧(O3)污染防控提供支持.利用2020年夏季7~8月北京城区点位监测的小时分辨率VOCs在线数据,分析高O3浓度时段和低O3浓度时段环境受体中VOCs化学特征和臭氧生成潜势(OFP),并利用正定矩阵因子分解(PMF)模型进行精细化源解析.结果表明,观测期间监测点φ[总大气挥发性有机物(TVOCs)]平均值为12.65×10-9,高O3时段和低O3时段φ(TVOCs)平均值分别为13.44×10-9和12.33×10-9,OFP分别为107.6μg·m-3和99.2μg·m-3.观测期间O3生成受VOCs控制,芳香烃的反应活性最高,对OFP贡献排名前三的组分均为异戊二烯、甲苯和间/对-二甲苯.低O3时段环境受体中VOCs的主要来源包括汽车排放(26.4%)、背景排放(15.7%)、溶剂使用(13.0%)、汽修(12.8%)、二次生成源(9.7%)、生物质燃烧(6.1%)、印刷行业(5.7%)、液化天然气(LNG)燃料车(5.5%)和植被排放(5.0%),其中背景排放、二次生成和印刷行业源在近年来北京VOCs源解析研究中少有讨论.高O3时段汽修源和二次生成源贡献分别较低O3时段上升了3.4%和2.6%,汽车排放仍是北京城区最主要的VOCs贡献源.植被排放源从07:00开始上升,在午后达到最高;背景排放源的贡献变化较小;汽车排放和LNG燃料车排放源呈现早晚高峰特征,下午时贡献相对较低.  相似文献   

6.

2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)µg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。

  相似文献   

7.
王帅  王秀艳  杨文  王雨燕  白瑾丰  程颖 《环境科学》2022,43(3):1277-1285
近年来,我国城市的臭氧(O3)污染问题日益突出.挥发性有机物(VOCs)是O3生成的重要前体物,因此,了解VOCs主要特征以及来源对控制O3污染具有重要意义.于2019年5~9月在淄博市开展了在线VOCs观测,共计监测56个物种.观测期间,O3超标率为67.8%,ρ(VOCs)平均值为140.71μg·m-3,O3超标日的VOCs浓度为非超标日的1.04倍.从VOCs组分结构上看,浓度从高到低依次为:芳香烃>烷烃>烯烃>炔烃.其中1,3,5-三甲苯、邻-乙基甲苯、 1-丁烯和正己烷为超标日和非超标日排放较高的物种.臭氧生成潜势(OFP)中芳香烃和烯烃贡献较大.由PMF源解析结果得出,该城区VOCs来源主要包括机动车源、固定燃烧源、溶剂使用源、工艺过程源和天然植物源,其中机动车源为该城区最主要的VOCs来源.此外,O3超标日的机动车源占比为32.3%,固定燃烧源占比为24.2%,相比于非超标日分别升高了3.3%和6.9...  相似文献   

8.
2019年在珠三角典型产业重镇佛山市狮山镇在线监测大气挥发性有机化合物(VOCs),并开展大气VOCs污染特征、臭氧生成潜势(OFP)及来源贡献分析.观测期间共测得56种VOCs物种,总挥发性有机物(TVOCs)体积浓度为(39.64±30.46)×10-9,主要组成为烷烃(56.5%)和芳香烃(30.1%).大气VO...  相似文献   

9.
基于聊城市2021年6月挥发性有机物(VOCs)和臭氧(O3)在线监测数据,系统分析了O3污染日和清洁日VOCs的浓度水平、组成特征、日变化特征和O3生成潜势(OFP),通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)识别了VOCs的潜在源区,利用特征物种比值和正定矩阵因子分解(PMF)模型对VOCs来源进行了解析.结果表明,聊城市2021年6月O3污染日和清洁日ρ(VOCs)小时均值分别为(115.38±59.12)μg·m-3和(88.10±33.04)μg·m-3,各类别VOCs浓度水平在污染日和清洁日的大小均表现为:含氧挥发性有机物(OVOCs)>烷烃>卤代烃>芳香烃>烯烃>炔烃>有机硫.污染日和清洁日浓度差值较大的VOCs物种均出现在二者VOCs浓度小时均值贡献前10物种中.总VOCs、烷烃、炔烃、芳香烃、卤代烃和有机硫浓度日变化趋势表现为日间低于夜间,OVOCs浓度日变化呈现出白天高,夜间低的特...  相似文献   

10.
为探究重污染天气污染过程VOCs化学组分特征及主要来源,利用2019~2020年天津市11次重污染天气预警及应急响应前后逐小时VOCs在线数据,分析环境受体中VOCs化学组分变化特征,并利用正定矩阵因子分解(PMF)模型及二元条件概率函数(CBPF)解析其来源.结果表明,在重污染天气预警及应急响应期间,观测点φ(VOCs)均值为35.7×10-9.冬季应急响应期间VOCs体积分数较秋季有所增加,其中烯烃增加48%,烷烃增加4%.重污染天气预警及应急响应期间污染累积阶段,不同VOCs组分其变化幅度有明显差异,橙色预警期间,烷烃占比增加36%,乙炔占比下降32%;黄色预警期间,烷烃占比增长14%,乙炔占比下降5%.重污染天气预警及应急响应期间,机动车排放源、天然气挥发源及溶剂使用源是环境受体中VOCs主要贡献源,贡献率分别为17.5%、 15.4%和15.2%.相比应急响应前,黄色预警期间机动车排放源和柴油挥发源对环境受体中VOCs的贡献率分别减少2.0%~5.5%和2.1%~6.6%,溶剂使用源贡献率减少0.2%~2.4%;橙色预警期间,机动车排放源贡献率减少0.1%~8.3%,溶剂使用源贡献率减少0.5%~6.2%.  相似文献   

11.
南京市北郊夏季挥发性有机物的源解析   总被引:5,自引:15,他引:5  
杨辉  朱彬  高晋徽  李用宇  夏丽 《环境科学》2013,34(12):4519-4528
2012年8月利用在线气相色谱仪对南京市北郊大气环境中的挥发性有机物(VOCs)进行连续监测,分析VOCs时间变化规律,并利用PMF(positive matrix factorization)受体模型和CPF(conditional probability function)方法对其来源进行解析.结果表明,南京市北郊夏季VOCs日变化呈双峰分布,小时平均体积分数为(33.84±27.77)×10-9,夜间高于昼间.其中含量最高的是烷烃,其次是烯烃和芳烃,分别占到总挥发性有机物(TVOCs)的49.3%、24.4%和18.5%,乙炔占7.8%.南京市北郊夏季VOCs主要来源有5个,分别是交通尾气、燃料挥发、工业排放、有机溶剂挥发和植物排放源,各自对TVOCs贡献为33.1%、25.8%、23.2%、8.1%和9.7%.烷烃主要来源于汽车尾气排放、工业排放和燃料挥发,贡献百分比分别为23.7%、35.3%和31.3%;烯烃主要来源于燃料挥发、工业排放和汽车尾气排放,分别占41.1%、18.4%和24.3%;对芳烃贡献最大的为汽车尾气排放,占到49.2%,其次是有机溶剂挥发排放占30.8%.  相似文献   

12.
目前在世界范围内,由于高原城市海拔高、紫外线照射强烈,造成大气中挥发性有机物的源汇归趋呈现较独特的特点.本研究对2019年拉萨市2个城市站点和1个背景站进行大气挥发性有机物(VOCs)的离线罐采样及实验室组分分析,探究了拉萨地区VOCs体积分数水平、组成特征和来源贡献.拉萨市平均φ(VOCs)为49.83×10-9,其...  相似文献   

13.
为了解大连市环境空气挥发性有机物(VOCs)污染特征及来源,基于2020年6~8月高时间分辨率VOCs在线观测数据,对大连市大气VOCs的浓度水平、组成特征、反应活性及来源情况进行了分析.结果表明φ(VOCs)的平均值为(10.21±5.71)×10-9,其中烷烃占比为66.35%,烯烃为11.89%,炔烃为7.75%,芳香烃为14.01%.VOCs和NOx呈现夜间高,白天低的特征,而O3变化趋势相反.综合考虑物种活性,确定甲苯、乙烯、间/对-二甲苯、1-己烯、正丁烷、异戊烷、正戊烷和异戊二烯是影响大连市大气VOCs的关键物种,优先控制烯烃和芳香烃类化合物的排放是改善大连市夏季O3污染的关键.PMF源解析结果显示交通源(26.38%)、燃烧源(22.75%)、工业排放源(17.09%)、溶剂使用源(14.59%)、天然源(11.72%)和其他(7.47%)为监测期间VOCs的主要来源,交通源和燃烧源排放是大连市夏季O3防控的重点污染源.  相似文献   

14.
郑州市春季大气挥发性有机物污染特征及源解析   总被引:2,自引:10,他引:2  
对2018年春季郑州市5点位进行环境大气挥发性有机物(VOCs)罐采样及组分分析,开展其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和来源解析研究.结果表明,郑州市春季VOCs体积分数为(30. 66±13. 60)×10-9,烷烃占比最高(35. 3%),其次为OVOCs(25. 3%)、卤代烃(24. 1%)、芳香烃(10. 0%)和烯烃(5. 2%);总OFP为195. 53μg·m-3,烷烃、烯烃、芳香烃、卤代烃和OVOCs贡献率分别为25. 6%、17. 8%、38. 9%、5. 8%和11. 9%;总AFP为0. 95μg·m-3,芳香烃贡献率最高(87. 6%),其次为烷烃(12. 4%);秦岭路和经开区点位正戊烷、异戊烷、苯和甲苯受机动车影响较大,郑州大学点位主要受燃烧源影响;源解析显示机动车尾气及LPG挥发、溶剂使用源、工业过程源、区域老化气团和植物源对采样期间VOCs浓度贡献依次是30. 5%、27. 3%、22. 1%、14. 4%和5. 7%.  相似文献   

15.
刘齐  卢星林  曾鹏  于奭 《环境科学》2021,42(1):65-74
为了解我国西南岩溶工业地区VOCs 污染特征及其来源,2019年3 月用GC955 挥发性有机物在线监测系统对柳州市大气VOCs进行监测并对其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和正交矩阵因子模型(PMF)进行分析.结果表明:①研究区春季监测期间共检出50种VOCs组分,日平均摩尔分数为25.52...  相似文献   

16.
为研究石家庄市挥发性有机物(VOCs)的化学特征和污染来源,于2017年3月至2018年1月取3个国控点进行环境VOCs的罐采样及分析,并结合臭氧(O3)及气象数据进行相关性分析,采用正交矩阵因子模型(PMF)开展溯源解析;为确定夏季O3的污染周期,利用小波分析研究其时序特征.结果表明,石家庄市采样期间VOCs浓度为(137.23±64.62)μg·m-3,以卤代烷烃(31.77%)、芳香烃(30.97%)和含氧VOCs(OVOCs,23.76%)为主.采样期间VOCs的季节变化为:冬季(187.7μg·m-3)>秋季(146.8μg·m-3)>春季(133.24μg·m-3)>夏季(107.1μg·m-3),空间特征呈自西向东逐渐增加的格局.监测期内O3与VOCs、NO2呈显著负相关,与温度、日照时数、风速和能见度呈正相关.在夏季O3≤160μg·m...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号