首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用液相还原法,通过先负载再包裹的方式制备了4种不同炭铁质量比的生物炭负载羧甲基纤维素钠稳定化纳米铁(BC-nZVI-CMC)材料,并将其用于对水中Cr(Ⅵ)的去除,使用扫描电镜、X射线衍射和傅里叶红外等技术对BC-nZVI-CMC的结构与性质进行了表征。结果表明:BC-nZVI-CMC具有较好的分散性,粒径为纳米级且被CMC完全包覆,抗氧化能力得到较大提升,可有效去除水中Cr(Ⅵ);投加1 g·L−1的BC-nZVI-CMC对含有30 mg·L−1的Cr(Ⅵ)去除率达99.83%;pH越小,越有利于BC-nZVI-CMC对水中Cr(Ⅵ)的去除,最高去除率可达100%;BC-nZVI-CMC的抗氧化能力明显高于商品纳米铁和生物炭负载纳米铁;含有8 g·L−1 C/Fe=1∶1的BC-nZVI-CMC对电镀废水中Ni、Zn、Cu、总铬、Cr(Ⅵ)的去除率可达39.60%、91.70%、100%、91.69%、100%。上述研究结果对水中Cr(Ⅵ)去除新技术的开发有重要的参考价值。  相似文献   

2.
利用液相还原法,使生物炭携载纳米零价铁,可以有效解决纳米零价铁在水处理应用中自身团聚问题,从而提高Cr(VI)的去除效率。研究发现:在添加相同剂量纳米的条件下,当炭铁质量比为5:1时,生物炭携载纳米零价铁对溶液中Cr(VI)的去除率可达到96.8%,比纯纳米零价铁去除Cr(VI)的效率高35.9%;TEM和BET分析表明,生物炭携载纳米零价铁比纯纳米零价铁有更好的分散性和更高的比表面积,这是其去除Cr(VI)效果更好的主要原因;当溶液中Cr(VI)的反应初始浓度从25 mg/L提升至125 mg/L时,表观速率常数kobs从0.104 1 min-1降低至0.023 5 min-1,说明反应速率随着Cr(VI)初始浓度的增大而降低;当反应溶液初始pH在4.5~8.5之间时,携载纳米零价铁的生物炭对溶液中Cr(VI)的去除率均达到92.1%以上,表明生物炭携载纳米零价铁具有较广的pH适应范围,且对Cr(VI)具有较好的去除效果。  相似文献   

3.
为了高效处理地下水中的As(Ⅲ),设计了一种流通式电芬顿处理系统,考察了电流密度、pH、曝气速率、流速、电解质浓度以及共存离子等关键因素对As(Ⅲ)去除率的影响。此外,对电芬顿体系中As(III)的去除机理进行了分析,并对该系统在连续运行下的处理效果进行了评估。结果表明:在最佳反应条件下(电流密度为7.6 mA·cm−2、pH为6、流速为20 mL·min−1、曝气速率为80 mL·min−1、电解质浓度为100 mg·L−1),地下水中As(Ⅲ)的去除率接近100%,该系统可以在近中性的pH范围内发挥作用;在连续运行条件下,该系统能够保持良好的处理稳定性;在电芬顿反应体系中,·OH和HO2·能够共同促进As(III)的去除。水体中生成的As(Ⅴ)、Ni、Fe等能够在流通式系统中被过滤器有效地拦截,避免了二次污染的发生,污染水体得到净化。以上结果可为流通式电芬顿系统处理含As(Ⅲ)的地下水提供参考。  相似文献   

4.
Fenton氧化-絮凝耦合去除水中As(Ⅲ)的机理   总被引:2,自引:0,他引:2  
为了改善亚铁(Fe(Ⅱ))絮凝去除水中As(Ⅲ)的效果,对Fe(Ⅱ)/H2O2(Fenton试剂)氧化-絮凝耦合工艺进行了研究。以5 mg/L的As(Ⅲ)模拟废水为处理对象,对比了Fenton氧化-絮凝耦合处理As(Ⅲ)和单一Fe(Ⅱ)絮凝的效果。结果表明:单一絮凝对总砷的去除率只有60%左右,而氧化-絮凝耦合的去除率可达99.3%;氧化-絮凝耦合产生的絮体粒度约为单一絮凝的3倍,明显增强了絮凝沉降性能。SEM、XRD、BET测试结果表明:Fenton氧化-絮凝耦合去除水中As(Ⅲ)产生的絮体初级粒子是一种无定形纳米颗粒;氧化-絮凝耦合反应产生的Fe(Ⅱ)/Fe(Ⅲ)混合态水解形成纳米胶体,对As(Ⅴ)的絮凝吸附优于As(Ⅲ)。氧化还原电位的测定表明As(Ⅲ)被迅速氧化为As(Ⅴ),且是一种原位氧化-絮凝反应过程。  相似文献   

5.
在湿法烟气脱硝中,Fe(Ⅱ)EDTA是一种常用的螯合剂,对NO有良好的络合吸收能力,但是Fe(Ⅱ)EDTA容易被O2氧化成对NO无络合能力的Fe(Ⅲ)EDTA。因此,选择合适的还原剂实现Fe(Ⅲ)EDTA的高效还原是络合脱硝的关键技术之一。比较了铁碳(Fe/AC)和铁粉(Fe)在不同搅拌速度下对Fe(Ⅲ)EDTA的还原,系统探讨了铁碳质量比、O2浓度、铁碳中Fe与Fe(Ⅲ)EDTA的摩尔比、pH值和Fe(Ⅲ)EDTA初始浓度对铁碳还原Fe(Ⅲ)EDTA的影响,考察了Fe/AC投加前后NO吸收效率的变化,同时通过BET、XRD表征技术对铁碳材料进行了分析。结果表明:Fe/AC能很好地再生Fe(Ⅱ)EDTA,从而提高NO吸收效率。提高搅拌速度、铁碳中Fe与Fe(Ⅲ)EDTA的摩尔比、Fe(Ⅲ)EDTA初始浓度,Fe(Ⅲ)EDTA的还原速率会相应增大;O2浓度及pH增大会降低Fe(Ⅲ)EDTA的还原速率。表征结果表明,铁碳表面形成的氢氧化物为γ-FeOOH。  相似文献   

6.
以湿地植物芦苇、还原铁粉和膨润土为原材料,通过“均质化—碳化—焙烧”工艺,制备用于去除水体中As(Ⅲ)的植物基铁碳微电解材料,对其采用傅里叶红外光谱(FIR)、元素分析、X射线衍射分析及热重差热综合热分析(TGA)等方法进行系统表征,结合响应面优化研究对比得到不同植物基生物质前驱体(芦苇秆和芦苇叶)的不同组分(半纤维素、纤维素和木质素)对植物基铁碳微电解材料性能的影响。通过响应面模型获得的优化制备条件为:芦苇秆植物基铁碳微电解材料为Fe/C=1.06、碳化温度507.87 ℃、焙烧温度751.92 ℃,芦苇叶植物基铁碳微电解材料为Fe/C=1.01、碳化温度498.66 ℃、焙烧温度701.09 ℃,在此条件下5 g制备得到的材料对100 mL 10 mg·L−1 NaAsO2去除率分别为98.12%和97.22%。结果表明:在植物基生物质前驱体的不同组分中,纤维素和半纤维素含量越高,较低的碳化和焙烧温度能降低材料中灰分含量,提高有效碳元素质量分数,增加微原电池数量;木质素含量越高,高焙烧温度下,氧化及电子传递能力越强,有利于As(Ⅲ)转化为As(Ⅴ),从而提高As(Ⅲ)的去除效率。  相似文献   

7.
利用本实验所制备的海藻酸钠微胶囊负载纳米零价铁材料(M-NZVI)对水中不同浓度的As(V)进行了吸附去除研究,并比较了不同材料的吸附等温曲线。实验结果表明,2 g/L M-NZVI在pH=6.5±0.1,常温常压条件下对5 mg/L的As(V)的吸附去除率为90.35%,吸附速率较快,在30 min即可达到吸附平衡。通过M-NZVI、Ca-ALG和NZVI的热力学对比实验可知,M-NZVI表现出优越的吸附性能。溶液吸附剂添加量、初始pH值、离子浓度等因素对M-NZVI吸附水中砷离子的效率有一定影响:在其他条件不变的情况下,As(V)的去除率随着添加量的增加而逐渐增大;M-NZVI对As(V)的最佳吸附效果在pH=6~7范围之间;溶液中高浓度NaCl能对M-NZVI的吸附性产生较强的干扰。同时,对于As(V) ≤ 5 mg/L的溶液,M-NZVI可以不做任何处理多次利用3~4次。这些结果显示,M-NZVI是一种用于原位修复重金属污染水体的潜在理想材料。  相似文献   

8.
Fe(Ⅲ)微生物还原机理及其研究进展   总被引:6,自引:0,他引:6  
厌氧异养型微生物还原Fe(Ⅲ)的同时可以氧化降解有机物,在污染环境修复中具有积极的作用.目前对Fe(Ⅲ)微生物还原的物理、生物化学特性的认识还十分有限.总结了近年来自然环境中Fe(Ⅲ)还原菌的单菌种分离情况和混合菌的降解作用,探讨了Fe(Ⅲ)还原以及有机物降解的机理,分析了Fe(Ⅲ)可能对微生物产生的抑制作用,并提出了进一步研究的方向.  相似文献   

9.
以氧化石墨烯和正硅酸乙酯为原料,采用溶胶-凝胶法制得石墨烯/二氧化硅复合材料(GS),以GS为基体,采用液相还原法,得到石墨烯/二氧化硅负载纳米零价铁(NZVI/GS),将其用于水中As(Ⅲ)的吸附研究。通过XRD、TEM、BET、Zeta电位等表征手段对NZVI/GS进行表征。探讨不同反应条件对NZVI/GS的吸附影响,并进行动力学方程和吸附等温线方程拟合。结果表明,NZVI/GS对As(Ⅲ)具有良好的去除效果,当初始溶液pH为6~8,投加量为0.4 g·L-1,反应温度为35 ℃,砷初始浓度为2 mg·L-1时,NZVI/GS对As(Ⅲ)的去除率高达99.81%。通过Langmuir等温吸附方程得到NZVI/GS对As(Ⅲ)最大吸附量55.93 mg·g-1。  相似文献   

10.
无定型纳米TiO2吸附去除饮用水中的低浓度As(Ⅲ)   总被引:1,自引:0,他引:1  
研究了纳米无定型TiO2颗粒对饮用水中低浓度的三价砷As(Ⅲ)吸附行为。纳米TiO2颗粒吸附剂的BET表面积为205 m2/g,计算的BJH吸附平均孔径为4.02 nm(4 V/A)。对起始As(Ⅲ)浓度为150μg/L的模拟含砷水,经过5h的吸附处理后残余浓度不足4μg/L,As(Ⅲ)去除率达到97%。反应起始阶段吸附速率较快,84%的As(Ⅲ)能够在20min内去除。As(Ⅲ)吸附动力学较好地符合拟二级动力学模式。最佳As(Ⅲ)吸附pH为9.3,低于此值,随酸性增加吸附速率有所降低;而高于此值的强碱性pH对吸附有强烈抑制作用。在平衡浓度较低的情形下(10~220μg/L),Lang-muir,Freundlich和Dubinin-Radushkevich(D-R)吸附等温式均可较好拟合吸附行为,但中性和弱碱性条件下更符合Fre-undlich吸附等温式;平衡浓度大于220μg/L,吸附容量随平衡浓度增加而迅速增加,最大吸附容量在低浓度下达到4.79 mg/g。  相似文献   

11.
利用茶渣中的残余多酚类物质,通过绿色合成法制得零价铁(ZVI),并以茶渣烧制的生物炭(BC)作为载体负载ZVI,将制得的ZVI/BC材料用于去除水体中Cr(Ⅵ)及修复Cr(Ⅵ)污染土壤。结果表明,茶渣中提取的多酚可以成功还原Fe(Ⅱ)制备ZVI,且制得的ZVI/BC复合材料具有优秀的Cr(Ⅵ)去除能力;ZVI/BC对Cr(Ⅵ)的吸附过程为单分子层化学吸附,ZVI为反应中心,其对Cr(Ⅵ)的吸附等温线符合Langmuir模型,在溶液初始pH为3时对Cr(Ⅵ)吸附性能最佳。与BC相比,ZVI/BC更能促进土壤中的铬从易被利用的可交换态、碳酸盐结合态向较难被利用的铁锰氧化态、有机态转化。ZVI/BC主要通过还原反应修复土壤和水体中的Cr(Ⅵ),同时也伴随着表面络合过程。  相似文献   

12.
采用液相还原法制备膨润土负载纳米铁(B-NZVI),并用十六烷基三甲基溴化铵(CTMAB)对其进行表面改性,研究了不同n(FeSO4)/n(NaBH4)(记为N)制备的(B-NZVI)/CTMAB的除铬效果。结果表明,N=1时制备的(B-NZVI)/CTMAB除Cr(Ⅵ)效率最高,较未改性的膨润土负载纳米铁(B-NZVI)的除Cr(Ⅵ)效率(57.7%)提高了23.7%,反应速率提高1.31倍。X射线衍射发现,N=1时不仅有零价铁,还有Fe(Ⅱ),对加快反应速率和提升去除效果有一定作用。从反应后产物的光电子能谱(XPS)图看出Cr(Ⅵ)被吸附后大部分还原为Cr(Ⅲ),而铁被氧化为Fe(Ⅲ)。最后,结合反应前后材料的表面电性以及扫描电镜图,对(B-NZVI)/CTMAB改性机制、改性后纳米零价铁线的形成及去除Cr(Ⅵ)的机理和产物等进行了探究。  相似文献   

13.
通过氢氟酸和氢氧化钠改性水稻秸秆生物质炭(BC),得到改性材料BC-HF和BC-NaOH,在此基础上负载纳米零价铁(Nanoscale zero-valent iron,nZVI)制得生物质炭负载纳米零价铁(nZVI@BC)、氢氟酸改性生物质炭负载纳米零价铁(nZVI@BC-HF)和氢氧化钠改性生物质炭负载纳米零价铁(nZVI@BC-NaOH)。通过比表面积分析、元素分析、红外光谱分析、X射线衍射分析以及动力学等方法,研究了不同材料对Cr(Ⅵ)的去除性能与机理。结果表明:酸碱改性后的生物质炭比表面积、孔体积显著增加,促进了Cr(Ⅵ)的去除,BC-HF和BC-NaOH对Cr(Ⅵ)的去除量分别为30.87、19.59 mg·g−1,为BC的2.68、1.70倍;负载nZVI后,进一步增强了Cr(Ⅵ)的去除效果,其中,nZVI@BC-HF和nZVI@BC-NaOH对Cr(Ⅵ)的去除效果显著,去除量分别为76.36、65.62 mg·g−1。酸碱改性生物质炭使nZVI得到了有效分散,其表面的Si-O-Si官能团与nZVI耦合成Si-O-Fe键,增强了nZVI对Cr(Ⅵ)的还原;同时,酸碱改性生物质炭负载nZVI促进了铁铬化合物的结晶,有利于反应的持续进行。本研究表明,酸碱改性生物质炭-纳米零价铁复合材料对于地下水中Cr(Ⅵ)的去除具有较大的应用潜力。  相似文献   

14.
通过化学负载方法成功制得纳米零价铁改性氨基生物炭复合材料(ABC/NZVI),对其进行表征和研究了其对重金属Cd(Ⅱ)的吸附和解吸特性。结果表明,改性后,ABC/NZVI具有氨基官能团并且表面负载了纳米零价铁,比表面积为244 m2·g-1,在水溶液中稳定悬浮的平均粒径是845 nm。ABC/NZVI对Cd(Ⅱ)的吸附大约在457 min内即可达到吸附平衡,吸附动力学可用伪二级动力学模型较好地拟合(R2≥0.990);对Cd(Ⅱ)表现出优良的吸附性能,饱和吸附容量为12.4 mg·g-1,吸附/解吸等温线均呈现出明显的非线性,可用Langmuir模型较好地拟合(R2≥0.960),而且出现明显的解吸滞后现象,滞后系数(HI)为0.536。因此,ABC/NZVI对Cd(Ⅱ)的吸附可能为单分子层的化学吸附,主要的吸附机理可能涉及配合和沉淀两种作用。  相似文献   

15.
本文针对废水中Cr(Ⅵ),以市政脱水污泥为原料,通过液相还原技术成功制得纳米铁改性污泥基生物炭(nZVI/BC),并考察了nZVI/BC对水中Cr(Ⅵ)的吸附性能和可能的吸附机理。表征结果表明,零价铁颗粒成功负载到生物炭表面且无明显团聚现象。吸附实验结果表明,初始pH、溶液初始Cr(Ⅵ)质量浓度对Cr(Ⅵ)的去除效果均有显著影响。nZVI/BC对Cr(Ⅵ)的吸附过程可以使用伪二级(PSO)吸附动力学模型拟合。吸附等温线拟合分析结果表明,nZVI/BC对Cr(Ⅵ)的吸附性能优于nZVI和BC。Cr(Ⅵ)的去除机制可能涉及其在nZVI/BC表面的化学还原,此外,nZVI/BC抗氧化性较强,且在一定条件下可实现再生处理。总体而言,作为一种环境友好型材料,nZVI/BC的应用为废水中Cr(Ⅵ)的去除可提供良好途径。  相似文献   

16.
通过蜈蚣草室内水培试验,研究了蜈蚣草对As(Ⅲ)的吸收特性和动力学规律.结果表明,蜈蚣草在吸收As(Ⅲ)的同时,可以将As(Ⅲ)氧化为As(Ⅴ),然后再进行吸收;当培养液中As(Ⅲ)初始浓度较低(10.00 mg/L)时,蜈蚣草对砷的吸收和氧化过程较好地符合一级动力学规律,表观速率常数为0.104 h-1,当初始质量浓...  相似文献   

17.
周宁  彭先佳 《环境工程学报》2014,8(5):1970-1976
使用沉淀负载法制备了载钴活性焦,并研究了溶液pH值、反应时间、As(V)初始浓度以及共存阴离子等对载钴活性焦吸附去除水环境中As(V)的影响。结果表明,(1)载钴后活性焦的比表面积和孔容积分别提高了20.87%和43.47%;(2)载钴活性焦对As(V)最佳吸附pH值为4.0,当As(V)的初始浓度为10 mg/L时,As(V)去除率可达97%;(3)吸附过程符合准二级动力学模型(k2=0.66,R2=0.96),吸附等温线为Freundlich型(kF=8.227,1/n=0.396,R2=0.97);(4)稳定性实验验证了载钴活性焦的稳定性,钴不易脱附,最大脱附率仅为0.145%。  相似文献   

18.
19.
以谷壳为原料,通过600℃缺氧高温热解制备一种炭化谷壳(CRH-I),并利用CRH-I通过改性负载方法获得另一种新型的负载纳米Fe3O4的碱改性炭化谷壳(CRH-II)。经过对比表面积进行表征分析发现,CRH-II相较CRH-I的BET比表面积增大约30%,达到182 m2·g-1,微比表面积和微孔体积都扩大了6倍左右。FTIR分析结果表明,相比CRH-I,CRH-II分子间的羧基和酚羟基官能团有所增加,产生了芳构化反应和脂肪醚类物质。吸附实验表明,相对CRH-I而言,CRH-II对As(V)的吸附率明显提高。pH=2时,CRH-II对溶液中As(V)的吸附率达到98.3%;但是As的吸附率随着溶液pH值升高而逐渐降低,pH=11时下降最为明显,吸附率只有63.4%。CRH-II吸附反应满足准动力学二级方程,其相关系数为R2=0.999;在不同温度下,将CRH-II对As(V)的吸附验数据进行Langmuir方程和Freundlich等温方程拟合,结果更符合Langmuir方程;在25℃时,相关系数R2=0.985。解吸吸附实验证明,CRH-II依然具备良好的吸附性能,且再生吸附性能稳定。  相似文献   

20.
生物炭作为一种疏松多孔的吸附材料,近年来被广泛应用于受污染水体净化。通过构建生物炭投加比为0、10%、30%和40%的间歇曝气湿地系统(分别命名为CW、BW1、BW2和BW3),探究了生物炭投加比例对间歇曝气湿地中污染物去除及微生物群落结构的影响。结果表明,投加生物炭可提高湿地系统曝气段水体中平均溶解氧(DO)浓度。其中,BW3曝气段平均DO浓度为2.5 mg·L−1,相较于CW提高了13.6%,但添加生物炭对非曝气段DO浓度影响不显著(P>0.05)。所有湿地系统水体中化学需氧量(COD)去除率均高于90%,生物炭添加对耗氧有机物去除的影响并不显著。当生物炭投加比例由0增加至40%时,氨氮的去除率由80.76%提高至99.43%。生物炭可以显著提升湿地系统总氮的去除效果,BW3的总氮去除率相较于空白对照提高了18.5%,且在各反应器出水中均未检测到硝态氮(${{\rm{NO}}_3^ -} $-N)和亚硝态氮(${{\rm{NO}}_2^ -} $-N)。高通量测序结果显示,在门类水平,生物炭增加了拟杆菌门(Bacteroidetess)和变形菌门(Proteobacteria)数量,降低了放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)和螺旋体菌门(Saccharibacteria)的相对丰度。各湿地系统中已检出与脱氮相关的菌属共13种,生物炭投加可提升Nitrospira、Thauera、Rhodobacter和Pseudomonas等10余种与脱氮相关的菌落丰度。在间歇曝气湿地系统中,生物炭可以通过增加脱氮相关菌属,提高对氮素污染物的净化效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号