首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

2.
Feng J  Chan CK  Fang M  Hu M  He L  Tang X 《Chemosphere》2005,61(5):623-632
Twenty-eight PM2.5 samples collected in Summer (July 2002) and Winter (November 2002) at two sites in Beijing, China were analyzed using GC/MS to investigate the impact of meteorology and coal burning on the solvent extractable organic compounds (SEOC). The characteristics and abundance of the n-alkanes, polycyclic aromatic hydrocarbons (PAHs), n-fatty acids and n-alkanols were determined. Source identification was made using organic species as molecular markers. Semi-volatile compounds of alkanes and PAHs had much higher concentrations in winter than summer because of the large difference in the temperature between the seasons. Plant wax emission was a major contributor to n-alkanes in summer, but fossil fuel residue was a major source (>80%) in winter. The seasonal differences in the distribution of pentacyclic triterpanes clearly shows the impact of coal burning for space heating in winter. The yield of PAHs in winter (148 ng m(-3) at the urban site and 277 ng m(-3) at the suburban site) was six to eight times higher than that in summer and was found to be mainly from coal burning. Higher pollutant concentrations were measured at the suburban site than the urban site in winter due to the rapid expansion of the city limit and the relocation of factories from urban to suburban areas over the last two decades.  相似文献   

3.
Okuda T  Naoi D  Tenmoku M  Tanaka S  He K  Ma Y  Yang F  Lei Y  Jia Y  Zhang D 《Chemosphere》2006,65(3):427-435
We developed a useful analytical method for the determination of polycyclic aromatic hydrocarbons (PAH) concentrations in the aerosol of China. We used an accelerated solvent extraction (ASE) method for the extraction of PAHs from the aerosol samples, in order to reduce the extraction time and the solvent volume used. The optimum purification method was developed, with aminopropylsilane chemically-bonded stationary-phase column chromatography, in order to remove many co-extractives which cannot be removed by conventional purification methods using silica-gel column chromatography. HPLC/fluorescence detection (FLD) was adopted as the analytical method, because it has very high sensitivity to PAH and it is easy to install, operate, and maintain as compared with GC/MS. With the analytical method developed in this study, the recovery and precision (RSD) for most of the PAHs ranged from 75% to 129% and from 2.8% to 22.7%, respectively. The concentrations of PAHs in the aerosol samples collected from October 2003 to April 2005 in Beijing, China were determined using the newly developed method. SigmaPAHs, which is the sum of the concentrations of all detected PAHs, was 177.8 +/- 239.9 ng m(-3) (n = 64). The SigmaPAHs concentration in the heating season (305.1 +/- 279.0 ng m(-3), n = 33) was 7.2 times higher than that in the non-heating season (42.3 +/- 32.0 ng m(-3), n = 31). These strong seasonal variations in atmospheric PAH concentration are possibly due to coal combustion for residential heating in winter.  相似文献   

4.
The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0+/-7.0 ng m(-3)), fluoranthene (6.5+/-1.7 ng m(-3)), pyrene (6.6+/-2.4 ng m(-3)), and chrysene (3.1+/-1.5 ng m(-3)). Total concentration (gas+particulate) of PAH ranged from 44.3 to 129.2 ng m(-3), with a mean concentration of 79.3 ng m(-3). Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m(-3) with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m(-3), with an average of 25.2 ng m(-3). PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles.  相似文献   

5.
The molecular composition of PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) aerosol samples collected during a very warm and dry 2003 summer period at a mixed forest site in Jülich, Germany, was determined by gas chromatography/mass spectrometry in an effort to evaluate photooxidation products of biogenic volatile organic compounds (BVOCs) and other markers for aerosol source characterization. Six major classes of compounds represented by twenty-four individual organic species were identified and measured, comprising tracers for biomass combustion, short-chain acids, fatty acids, sugars/sugar alcohols, and tracers for the photooxidation of isoprene and alpha-/beta-pinene. The tracers for the photooxidation of alpha-/beta-pinene include two compounds, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid, which have only recently been elucidated. The characteristic molecular distribution of the fatty acids with a strong even/odd number carbon preference indicates a biological origin, while the presence of isoprene and terpene secondary organic aerosol products suggests that the photooxidation of BVOCs contributes to aerosol formation at this site. The sum of the median concentrations of the isoprene oxidation products was 21.2 ng m(-3), while that of the terpene oxidation products was 19.8 ng m(-3). On the other hand, the high median concentration of malic acid (37 ng m(-3)) implies that photooxidation of unsaturated fatty acids should also be considered as an important aerosol source process. In addition, the occurrence of levoglucosan and pyrogallol indicates that the site is affected by biomass combustion. Their median concentrations were 30 and 8.9 ng m(-3), respectively.  相似文献   

6.
Fang GC  Wu YS  Fu PP  Yang IL  Chen MH 《Chemosphere》2004,54(4):443-452
The concentrations of gas-phase and particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously at an industrial area (Taichung Industrial Park) and a suburban area (Tunghai University Campus) in Taichung, Taiwan. Twenty-four hours samplings for two consecutive days were performed between August and December 2002 at both sampling sites. Ambient air particle-bound PAHs were collected on quartz filters and gas-phase PAHs were collected on glass cartridges using a PUF Sampler, respectively. Both types of samples were extracted with a DCM/n-hexane mixture (50/50, v/v) for 24 h, then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Total PAHs concentrations at the Taichung Industrial Park (TIP) sampling site and the Tunghai University Campus (THUC) sampling site were found to be 1232.3+/-963.6 and 609.8+/-356.3 ng/m(3), respectively. Stationary combustion processes were mainly responsible for PAHs sources at the TIP sampling site, while traffic vehicle exhaust was the largest contributor for PAHs sources at the THUC sampling site.  相似文献   

7.
Duan J  Bi X  Tan J  Sheng G  Fu J 《Chemosphere》2007,67(3):614-622
Size distribution aerosol samples were collected at an urban location of Guangzhou in four seasons of 2003-2004 by a MOUDI (Micro-orifice Uniform Deposit Impactor). The particle loading (PM10: 80-397 microg m(-3)) was comparable with some other Asia cities; however, much higher than that of Western Europe and North America. Polycyclic aromatic hydrocarbons (PAHs) were measured by gas chromatography with mass selective detector (GC-MS). Seasonal effects on the size distribution of PAHs are presented. Bimode (accumulation and coarse mode) and unimode (accumulation mode) distributions were observed for low-molecule-weight and high-molecule-weight PAHs. A slight shift to larger particles was found for the accumulation mode in autumn and winter, compared with that of spring and summer. One explanation is that the longer aging process of PAHs in autumn and winter would result in volatilization from finer particles followed by condensation onto coarser particles. Another is there was mixing process of local emission with long-range transported aerosol in autumn and winter. The relative higher value of IcdP/(BghiP+IcdP) and lower value of BghiP/BeP in winter also give evidences to the mixing process. The level of PAHs concentration has been much elevated in recent years. This can be attributed to the fast growth of motor vehicle and energy consumption.  相似文献   

8.
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.  相似文献   

9.
Total suspended particle (TSP) was collected and analyzed at rural and urban sites in Tianjin, China during the domestic heating season (from 15 November to 15 March) of 2003/4 for n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). The normalized distribution of n-alkanes with the peak at C22, C23, C24 or C25 suggested that fossil fuel utilization was the major source of particulate n-alkanes at both sites. PAHs normalized distribution for each sample was similar and the higher molecular weight PAH dominated the profile (around 90%) indicating a stronger combustion source at both sites. Precipitation and wind were the most important meteorological factors influencing TSP and PAHs atmospheric concentrations. In the urban area the emission height had significant influence on PAHs levels at different heights under the relative stable atmospheric conditions. Coal combustion was the major source for TSP-bound PAHs at both sites based on some diagnostic ratios.  相似文献   

10.
The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM10) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2, and7.2–10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95–1.5-μm size range within the fine mode and at 7.3–10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49–0.95 and 7.3–10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1–12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM10 during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM10 was found in particles ≤0.95 μm in diameter which could induce adverse health effects to the population living in these areas.  相似文献   

11.
To investigate the sources, fate, and transport dynamics of PAHs (polycyclic aromatic hydrocarbons) in stormwater runoff that is a leading source of pollution in urban watersheds, storm and base flow samples were collected in six branches along the lower Anacostia River. PAHs in storm flow (1510-12,500 ng/L) were significantly enriched in the particle phase, which accounted for 68-97% of the total PAHs. It suggests that reducing particles in stormwater using post-treatment system would decrease PAHs considerably. The solid-water distribution coefficients (KD) of PAHs in the storm flow samples were up to 340 times higher than predicted values. A greater portion of high molecular weight PAHs and their distribution patterns indicate higher contribution of automobile originated pyrogenic PAHs. Total suspended solids in storm flow had a positive relationship with flow rates and exceeded benchmark level for the protection of aquatic biota in some samples.  相似文献   

12.
Levels of the monosaccharide anhydride (MA) levoglucosan and its isomeric compounds galactosan and mannosan were quantified in the PM10 fraction (particulate matter < or = 10 microm in aerodynamic diameter) of ambient aerosols from an urban (Oslo) and a suburban (Elverum) site in Norway, both influenced by small-scale wood burning. MAs are degradation products of cellulose and hemicellulose, and levoglucosan is especially emitted in high concentrations during pyrolysis and combustion of wood, making it a potential tracer of primary particles emitted from biomass burning. MAs were quantified using a novel high-performance liquid chromatography/ high-resolution mass spectrometry-time of flight method. This approach distinguishes between the isomeric compounds of MAs and benefits from the limited sample preparation required before analysis, and no extensive derivatization step is needed. The highest concentrations of levogucosan, galactosan, and mannosan (sigmaMA) were recorded in winter because of wood burning for residential heating (sigmaMA(MAX) = 1,240 ng m(-3)). This finding was substantiated by a relatively high correlation (R2 = 0.64) between the levoglucosan concentration and decreasing ambient temperature. At the suburban site, sigmaMA accounted for 3.1% of PM10, whereas the corresponding level at the urban site was 0.6%. The mass size distribution of MAs associated with atmospheric aerosols was measured using a Berner cascade impactor. The size distribution was characterized with a single mode at 561 nm. Ninety-five percent of the mass concentration of the MAs was found to be associated with particles < 2 micro.m. A preliminary attempt to estimate the contribution of wood burning to the mass concentration of PM10 in Oslo using levoglucosan as a tracer indicates that 24% comes from wood burning. This is approximately a factor of 2 lower than estimated by the AirQUIS dispersion model.  相似文献   

13.
The distribution of air particulate mass and selected particle components (trace elements and polycyclic aromatic hydrocarbons (PAHs)) in the fine and the coarse size fractions was investigated at a traffic-impacted urban site in Thessaloniki, Greece. 76±6% on average of the total ambient aerosol mass was distributed in the fine size fraction. Fine-sized trace elemental fractions ranged between 51% for Fe and 95% for Zn, while those of PAHs were between 95% and 99%. A significant seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. Similar seasonal trend was exhibited by PAHs, whereas larger fine fractions in summer were shown by trace elements. The compositional signatures of fine and coarse particle fractions were compared to that of local paved-road dust. A strong correlation was found between coarse particles and road dust suggesting strong contribution of resuspended road dust to the coarse particles. A multivariate receptor model (multiple regression on absolute principal component scores) was applied on separate fine and coarse aerosol data for source identification and apportionment. Results demonstrated that the largest contribution to fine-sized aerosol is traffic (38%) followed by road dust (28%), while road dust clearly dominated the coarse size fraction (57%).  相似文献   

14.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

15.
Liu S  Xia X  Zhai Y  Wang R  Liu T  Zhang S 《Chemosphere》2011,82(2):223-228
The concentrations of black carbon (BC), total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) have been determined in soils from urban and rural areas of Beijing. The rural area can be divided into plain and mountainous areas which are close to and relatively far from the urban area, respectively. Concentration of BC (5.83 ± 3.05 mg g−1) and BC/TOC concentration ratio (0.37 ± 0.15) in Beijing’s urban soil are high compared with that in world background soils and rural soils of Beijing, suggesting the urban environment to be an essential source and sink of BC. Concentration of BC in the urban area decreases from the inner city to exterior areas, which correlates with the urbanization history of Beijing and infers accumulation of BC in old urban soils. Black carbon in Beijing soils mainly comes from fossil fuel combustion, especially traffic emission. Median PAH concentration in the urban area (502 ng g−1) is one order of magnitude higher than that in the rural plain (148 ng g−1) and mountainous area (146 ng g−1) where PAHs are supposed to mainly come from atmospheric deposition from the urban area. Concentrations of BC correlate significantly with those of PAHs (p < 0.01, except naphthalene) in the urban area and with those of heavier 4-, 5- and 6- ring PAHs (p < 0.01) in the adjacent rural plain area, while there is no significant correlation with any PAH in the farther rural mountainous area.  相似文献   

16.
Guo W  He M  Yang Z  Lin C  Quan X  Wang H 《Chemosphere》2007,68(1):93-104
This study investigated the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, suspended particulate matter (SPM) and sediment of Daliao River watershed composed of the Hun River, Taizi River, and Daliao River. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and principal component analysis (PCA). The total concentrations of PAHs ranged from 946.1 to 13448.5 ng l(-1) in surface water, from 317.5 to 238518.7 ng g(-1) dry weight in SPM, and from 61.9 to 840.5 ng g(-1) dry weight in sediments. The levels of PAHs are relatively higher in water and SPM, and lower in sediments, in comparison with those reported for other rivers and marine systems around the world. The composition of PAHs in these mediums was mainly 4-6 rings PAHs. The higher contents of low molecular weight PAHs in the water and SPM suggest a relatively recent local source of PAHs, entered into the river via wastewater discharge and atmospheric way. On the other hand, the heavy pollution of PAHs in sediment and water near heavy industrial area suggests that PAHs have been released from industrial wastewater.  相似文献   

17.
Air samples were collected in an urban and industrialised area of Prato (Italy) during 2002, as part of a study to identify and measure aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). Total concentrations of aliphatic hydrocarbons ranged between 170 and 282ngm(-3) in the gas phase and from 48.9 to 276ngm(-3) in the particulate phase. The average total PAH concentrations (gas+particulate) were 59.4+/-26.5ngm(-3), and both gas and particulate phase PAH concentrations decreased with increasing temperature. Source identification using diagnostic ratios and principal component analysis identified automobile traffic, in particular, the strong influence of diesel fuel burning, as the major PAH source. Gas-particle partition coefficients (K(p)'s) of n-alkane and PAHs were well correlated with the sub-cooled liquid vapour pressure (P(L)(0)) and indicate stronger sorption of PAHs to aerosol particles compared with n-alkanes.  相似文献   

18.
The distribution of mutagenic activity and nitroaromatic components of polycyclic organic matter (POM) in ambient air at industrial, urban, suburban, rural, and remote sites was studied using organic extracts from high volume aerosol samples. Direct-acting mutagens including 1-nitropyrene (1-NP), dinitropyrenes (DNP), and hydroxynitropyrenes (HNP) were measured by high performance liquid chromatography while the mutagenicity was determined in the Salmonella bioassay with strain TA-98. Benzo(a)pyrene (BaP), one of the possible precursors of nitroaromatic compounds in POM, was also measured. In comparing samples from a range of sites, TSP and the concentration of BaP per mass of particulate matter decreased, as expected, at greater distances from urban and industrial combustion sources. However, the concentrations of polar nitroaromatic POM compounds per mass of particles were higher at a remote site than in nonindustrial urban and suburban areas. The mutagenicity in particulate matter extracts from the remote area was predominantly (>90 percent) in the very polar fractions. There were also high atmospheric levels of nitroaromatic compounds and mutagenicity in heavily industrialized areas. These observations may reflect the influences of source emissions, atmospheric transformations of POM compounds, and ther atmospheric processes on the composition of ambient suspended particulate matter.  相似文献   

19.
Air pollutants such as polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives (NPAHs), and some metals on airborne particles in Nagasaki city, Japan were determined over a period of 12 months by high-performance liquid chromatography with chemiluminescence, fluorescence and flameless atomic absorption spectrometry. The average concentrations (range) were 18.24 (4.07-41.54) ng/m3 for total PAHs, 0.91 (0.23-4.10) pg/m3 for NPAHs, 7.95 (1.71-16.31) ng/m3 for Pb, 11.56 (3.35-24.96) ng/m3 for Mn and 3.79 (0.97-14.71) ng/m3 for Ni (n = 136). The toxic equivalency factors adjusted concentration of total PAHs determined in Nagasaki city area was 2.33 ng/m3. Concentrations of total PAHs and NPAHs in winter were higher than those in summer. In a weekly variations study, total PAHs and NPAHs concentrations, as well as traffic volume showed a similar tendency with all values higher during weekdays and lower at the weekend. The correlation coefficients between total PAHs or NPAHs and traffic volume were 0.781 and 0.818, respectively. These results suggested that one of the main sources for NPAHs and PAHs in a city area might be motor vehicles.  相似文献   

20.
Deng H  Peng P  Huang W  Song J 《Chemosphere》2006,64(8):1401-1411
The Xijiang River is the major tributary of the Pearl River, South China, and is the major source water system for more than 4.5 million of urban population and 28.7 million of rural population. We initiated a systematic study on detection and quantification of organic pollutants in both water and suspended particulate matter (SPM) for samples collected in a span of 12 months. Our results showed that total concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) varied from 21.7 to 138 ng l(-1) in water and from 40.9 to 665 microg kg(-1) in SPM. The organic carbon normalized distribution coefficients (K(OC)) computed for the PAHs were correlated well with their octanol-water partition coefficient (K(OW)). The estimated annual loadings of Ant, BaA, and BghiP and the total PAHs in the Xijiang River were 1620, 330, 177 and 19,400 kg, respectively. Further analysis of the data showed that combustion may be the major source of PAHs and that direct leakage of petroleum products may be insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号