首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
城市灰尘PAHs累积与迁移过程的影响因素研究   总被引:3,自引:0,他引:3  
以上海市为例,探讨了城市中心城区地表灰尘中多环芳烃(PAHs)累积与迁移过程的影响因素.结果表明,粒度只是影响城市灰尘吸附PAHs的一个次要因子,与PAHs含量之间没有明显的相关关系.城市灰尘TOC与PAHs含量显著正相关(冬季r=0.62,p<0.000 1;夏季r=0.55,p=0.002),说明对于城市地表灰尘而言,有机质的含量越高,其吸收PAHs的能力就越强,这种结果与理论上PAHs的憎水亲脂性相一致.风向能够直接影响PAHs在空间上的分布趋势,污染源下风向的地区更容易累积较多的PAHs,且距离污染源越近,污染程度越重,相反,污染源上风向的地区则不利于PAHs的累积,污染程度较轻.夏季最高值出现在西北城区,含量为27 766 ng·g-1,冬季最高值出现在南部和东部城区,含量分别为30 741 ng·g-1和32 573 ng·g-1.大城市中心区存在PAHs污染的"空心效应".温度是影响城市灰尘PAHs累积与迁移的重要气象参数.  相似文献   

2.
为了解钢铁工业区对土壤环境的影响以及土壤的污染状况,采集上海典型钢铁工业区下风向的14个表层土壤样品,应用气相色谱-质谱联用仪(GC-MS)检测了样品中16种优控PAHs(多环芳烃)的含量水平,分析了钢铁工业区下风向土壤中PAHs的组成分布特征,并利用比值法和主成分分析法对土壤中的PAHs进行溯源.结果表明,钢铁工业区下风向土壤中∑16 PAHs(16种优控PAHs的含量)范围为167.0~2 355.0 μg/kg,∑7PAHs(7种具有致癌作用的PAHs的含量)在∑16 PAHs中平均比例为50.4%,近距离样区(< 1 km)表层土壤中∑16 PAHs平均值最高,为1 057.7 μg/kg,远距离样区(5~10 km)污染相对较轻,平均值为381.4 μg/kg;宝3、宝6和宝9采样点于钢铁工业区烧结工艺的下风向,导致宝3采样点∑16 PAHs最高,为2 355.0 μg/kg,宝3、宝6和宝9采样点土壤中PAHs含量依次降低;表层(0~20 cm)土壤中PAHs单体含量最高的为荧蒽,致癌性最强的苯并[a]芘含量范围为10.0~194.0 μg/kg,环数组成以4环为主,平均比例为46.3%,其次是5~6环,二者平均比例为39.9%,随着距离工业区越远,4环的组成比例越高,5~6环比例降低;比值法和主成分分析法结果显示土壤中PAHs主要来源于石油、煤的燃烧和机动车尾气的排放.研究显示,钢铁工业对多环芳烃贡献较大,下风向土壤中总多环芳烃的含量和高环多环芳烃比例都呈现明显的随距离递减特征,石油、煤的燃烧和机动车尾气的排放是其多环芳烃的最主要来源.   相似文献   

3.
为探讨城市建筑物对其周围土壤中多环芳烃(PAHs)含量与分布的影响,对建筑物勒脚或散水边缘(B)和距建筑物5m(B-5)处20个表层土壤样品中16种优控PAHs进行了检测分析.结果表明,B处土壤中∑16PAHs含量为824~8960ng/g,平均为2649ng/g;B-5处土壤中∑16PAHs含量为637~1706ng/g,平均为1297ng/g,B处PAHs含量远高于B-5.各样点主要以4环和5环PAHs为主,B处3环PAHs含量高于B-5处.其中∑4PAHs(Fl、Pyr、InP和BghiP)含量分别占B和B-5土壤中∑16PAHs的48%和45%.参照Maliszewska-Kordybach建立的土壤PAHs污染标准,HJ-5、AJ、AJ-5、EB-5和TC-5属于中等污染程度(600~1000ng/g),其余各样点均属于重度污染(1000ng/g).B处土壤中TOC相对B-5处有富集趋势,B和B-5处土壤中PAHs与TOC无明显的相关性.BaA、Chry、B(b/k)F、BaP、InP和DahA是B和B-5处土壤中TEQBaP浓度的主要贡献者.溯源结果表明B和B-5处土壤中PAHs主要来源于煤炭、汽油和柴油的燃烧;B-5土壤中PAHs部分可能来源于石油类的泄漏.  相似文献   

4.
大庆市不同环境介质中多环芳烃污染特征对比及来源解析   总被引:5,自引:4,他引:1  
宋宁宁  冯嘉申  于洋  李迎霞 《环境科学》2017,38(12):5272-5281
为研究不同环境介质中多环芳烃(PAHs)污染特征的异同,对大庆市道路灰尘中多环芳烃的污染特征和来源进行研究,在2012年10月采集了大庆市区23个道路灰尘样品和4个土壤样品.使用戴安ASE300快速溶剂萃取仪提取PAHs,净化浓缩后,利用气相色谱/质谱联用仪(GC/MS)测定了美国环保署列为优先控制污染物的16种PAHs及总PAHs(ΣPAHs)的含量.结果表明,道路灰尘中ΣPAHs含量的范围为579.5~4 656.7 ng·g~(-1),平均值为1839.7 ng·g~(-1).大庆市不同功能区道路灰尘中PAHs占ΣPAHs的质量比例呈现大体相似的特征,低环(2~3环)、中环(4环)、高环(5~6环)PAHs所占比例均值分别为37.9%,37.3%和24.8%.与相关研究中大庆水体及湖泊沉积物中PAHs数据进行对比,发现大庆土壤、湖泊沉积物、湖泊和水泡水体中均为低环PAHs占绝对主导优势,其质量分数高达69.3%~99.97%.ΣPAHs含量的分布受功能区的影响并不显著,与样点周围工厂的类型密切相关.特征化合物比值法表明,研究区PAHs主要来自于石油类燃料的泄漏、石油燃料燃烧及煤炭/生物质燃烧的混合源.正定矩阵因子分解法(PMF)结果表明,研究区道路灰尘中PAHs主要来源为煤炭燃烧、石油泄漏源、工业源以及交通源,其贡献率分别为30.1%、26.9%、23.6%和19.3%,与大庆地区其他环境介质中PAHs来源不完全相同.  相似文献   

5.
《环境科学与技术》2021,44(5):186-193
地下河作为岩溶地区的主要饮用水源地,对当地的经济和社会发展具有重要的支撑作用,但由于岩溶地区特殊的含水结构,使得多环芳烃(PAHs)有机污染物极易进入岩溶地下水环境中造成严重污染,影响水质安全。该研究选择了南宁市清水泉地下河作为典型地下河的代表,利用含量与组成分析法、同分异构体比值法和逸度方法开展多环芳烃污染特征研究。结果表明,地下水和表层沉积物中∑16PAHs浓度范围分别为276.76~460.12 ng/L、332.17~977.96 ng/g,PAHs浓度整体处于中低等污染水平。污染物排放及PAHs的理化性质使得PAHs浓度从上游至下游逐渐减少,但高环PAHs的比例逐渐升高。根据同分异构体比值法的源解析结果,研究区地下水中PAHs来源主要为上游的生物质燃烧源、中游的石油源和下游的混合源,沉积物与其有一定差异,中上游表征为生物质燃烧源,中下游表征为混合源。随着环数的增加,PAHs由向地下水中扩散转变为向沉积物中扩散,且有机碳的增加也会导致PAHs向沉积物中扩散。研究结果可以为岩溶地下水环境中PAHs污染物防治提供科学依据。  相似文献   

6.
为研究西南岩溶地区典型地下河沉积物中多环芳烃(PAHs)的污染特征,该文选择南宁市清水泉地下河进行分析,沿地下水流动方向共采集8个表层沉积物样品,并检测16种PAHs的含量。结果表明,地下河表层沉积物中∑PAHs浓度范围为257.71~609.29 ng/g,从PAHs组成来看,16种PAHs均被检出,且4环含量5~6环含量2~3环含量;空间分布规律呈下游含量中游含量上游含量的趋势,且2~3环PAHs的百分比先增大后降低,而4~6环PAHs的百分比变化则正相反;研究区的PAHs来源主要为煤炭和石油混合燃烧源(贡献率为62.90%)、石油源(贡献率为19.77%)、煤炭和天然气混合燃烧源(贡献率为8.54%)。  相似文献   

7.
多环芳烃是水环境中普遍存在的有害污染物,了解多环芳烃的污染特征与风险水平对饮用水源地的可持续发展及饮水安全具有重要意义.为此,采用固相萃取-气相色谱-质谱定性定量分析法对内蒙古东北部地区的满洲里和新右旗饮用水源33个(包含22个地下水和11个地表水)采样点中多环芳烃的残留进行了测定,分析了多环芳烃的污染水平并进行了健康和生态风险评估.结果表明,研究区域饮用水源水体33个采样点均有PAHs检出,除苯并[k]荧蒽、苯并[a]芘和二苯并[a, h]蒽这3种单体检出率范围为36.36%~95.45%外,其余13种PAHs单体检出率均为100%.■检出范围为42.76~164.50 ng·L-1,平均值为90.82 ng·L-1,其中地表水和地下水中■检出范围分别为66.39~164.50 ng·L-1和42.76~147.70 ng·L-1.检出的PAHs单体ρ(萘)最大,平均值达36.91 ng·L-1,ρ(蒽)最小,仅为0.81 ng·L-1,其中地下水与地表...  相似文献   

8.
以湖南某地区的饮用水源——某河流流经之处所涉3个乡镇的居民饮用水为研究对象,对水体中16种优控PAHs的质量浓度及其分布特征进行调查,并结合当地人群实际暴露参数进行健康风险评价. 结果表明:饮用水中ρ(∑PAHs)平均值为253.13 ng/L,分布范围为70.22~673.80 ng/L;其中,ρ(萘)和ρ(菲)最高,分别占ρ(∑PAHs)的39%和32%;毒性相对较大的苯并芘的检出率为67.5%,ρ(苯并芘)最高值为8.95 ng/L,满足GB 5749—2006《生活饮用水卫生标准》要求;研究区PAHs的致癌风险、一般人群的致癌风险均在可接受范围内,但是塘溪乡居民和其他部分特殊人群(如男性、城市地区和60~79岁人群)的致癌风险均大于10-6,值得关注;研究区PAHs暴露的非致癌风险均小于10-6,在可接受范围内.   相似文献   

9.
为探讨交通源对道路沿线大气及土壤中多环芳烃(PAHs)的影响,作者采集了道路沿线0、20、50、100、200 m不同距离梯度大气颗粒物(TSP)和土壤样品,分析两者PAHs的含量、组成和空间分布特征,通过构建PAHs的RQ-TEQ模型和土壤环境归趋模型估算多环芳烃累积生态风险影响。结果表明,200 m范围内TSP中∑16PAHs的浓度范围为2.66~16.31 ng/m3,平均值(8.17±3.51) ng/m3,随着与道路的距离增加,PAHs浓度呈现秋季先降低后升高再降低、春季先升高后降低的趋势,0~50 m范围内变化较大。土壤中∑16PAHs的含量为0.05~2.43 mg/kg,平均值(0.70±0.57) mg/kg,空间变化趋势与秋季TSP中PAHs基本一致,20 m处土壤中PAHs含量最低,这与行道树的遮蔽效应有关。苯并[b]荧蒽、苯并[k]荧蒽、茚苯[1,2,3-cd]芘和苯并[ghi]苝等高环PAHs含量在TSP中占比较高,土壤中则以荧蒽、芘、苯并[b]荧蒽、苯并[k]芘等中高环P...  相似文献   

10.
2016年7月于北江清远段采集21个水和表层沉积物样品,采用气相色谱质谱(GC-MS)法测定了样品中的PAHs(多环芳烃)含量,分析了北江水环境中PAHs的污染水平,并对其生态风险进行了评价.结果表明,水中ρ(∑PAHs)介于0.4~110.2 ng/L,表层沉积物中w(∑PAHs)(以干质量计,下同)在54.4~819.8 ng/g之间,平均值分别为41.7 ng/L和424.9 ng/g.与国内水体PAHs污染状况相比,北江清远段水中PAHs污染状况处于中低水平,而表层沉积物污染状况处于中等水平.运用特征比值法对PAHs来源进行分析表明,PAHs主要来源为石油泄漏、化石燃料燃烧.采用商值法对水中PAHs进行生态风险评价,∑PAHs和个别单体的最低风险浓度风险商值大于1.0而最高风险浓度风险商值小于1.0,处于中等污染水平;采用效应区间低、中值法对表层沉积物PAHs进行生态风险评价,仅个别点位表层沉积物中苊烯、蒽和二苯并[a,h]蒽超出生态效应低值,对生态环境潜在负面效应较小.研究显示,北江水和沉积物中PAHs潜在风险处于较低水平.   相似文献   

11.
采用气相色谱串联三重四极杆质谱仪(GC-MS/MS)对北部湾涠洲岛珊瑚礁区海水、沉积物和珊瑚中除萘(NAP)以外的15种优控多环芳烃(PAHs)的污染特征进行了研究.结果表明,涠洲岛珊瑚礁区海水、沉积物和珊瑚中普遍存在PAHs,且均以3环PAHs占优势(68.47%~85.62%).海水((2004.49±946.22) ng/L)、珊瑚组织((2487.58±1375.33) ng/g)和珊瑚共生虫黄藻((2496.76±979.26) ng/g)中PAHs总体积或质量(干重)浓度(∑15PAHs)较高,而沉积物((61.38±37.41) ng/g)中∑15PAHs较低.与2015年10月的水体和珊瑚组织相比,本次调查的涠洲岛珊瑚礁区PAHs污染显著加重.珊瑚共生虫黄藻中∑15PAHs与其叶绿素a浓度((2.14±1.92) mg/L)呈现显著的负相关性(P<0.05),表明生物稀释效应对珊瑚共生虫黄藻中∑15PAHs具有重要影响,即共生虫黄藻繁殖与生长过快将会导致叶绿素a浓度升高而∑  相似文献   

12.
北京城区道路灰尘重金属和多环芳烃污染状况探析   总被引:36,自引:16,他引:20  
研究了北京市不同功能区道路灰尘中重金属Cd、Hg、Cr、Cu、Ni、Pb、Zn和16种多环芳烃(PAHs)的分布状况和污染水平.结果表明,北京市道路灰尘中重金属Cd、Hg、Cr、Cu、Ni、Pb和Zn的浓度的平均值分别为710 ng/g、307 ng/g、85.0μg/g、78.3μg/g、41.1μg/g、69.6μg/g和248.5μg/g,显著低于世界上已有调研的大多数城市和国内的沈阳市和上海市;道路灰尘中∑16PAHs的浓度的平均值为0.398μg/g,也大大低于国内已有调研的邯郸市、天津市和上海市.弗里德曼非参数检验表明各功能区道路灰尘中重金属含量存在显著差异:居民居住区和绿化区域道路灰尘上重金属和PAHs的吸附量较小,而在机动车密度较大,车辆行驶较慢的城市交通区的道路灰尘上重金属和PAHs的污染都较严重.道路灰尘重金属浓度ZnCrCuPbNiCdHg,这种污染状况与世界其他各大城市是一致的.地积累指数评价法表明北京市道路灰尘上Cd、Zn和Cu处于中度污染水平,Cr和Pb处于轻度污染水平,Ni处于无实际污染水平.∑16PAHs的污染水平在不同功能区的差异比较大:公园道路灰尘为无污染至轻度污染水平,居民区道路灰尘处于中度至严重污染水平,交通密集区PAHs处于严重污染至极度污染水平.重金属和PAHs的质量负荷主要集中在粒径300μm的道路灰尘上,因此城市清扫车在去除地表颗粒物时不仅应当关注小尺度的颗粒物,应该通过升级除尘装备,尽量去除300μm以下的道路灰尘.  相似文献   

13.
为探讨农村居民区沟塘水质对周边浅层地下水的影响,在河南省某县选择典型沟塘,分别在枯水期和丰水期采集沟塘水和周边浅层地下水样品,采用高效液相色谱检测16种多环芳烃(PAHs)的含量,分别描述并比较枯丰水期PAHs的污染特征及其生态与健康风险.结果表明,枯水期沟塘水中BaP含量、∑PAHs、TEQ(BaP)含量和致癌性PAHs占比分别为0.911ng/L、29.3ng/L、1.64ng/L和28.1%,均低于丰水期;浅层地下水中各指标分别为5.37ng/L、291ng/L、12.5ng/L和25.9%,高于丰水期.枯丰水期沟塘水和浅层地下水中PAHs均主要源于生物质和煤炭燃烧.浅层地下水PAHs的含量与沟塘水具有关联性,即距离沟塘越近,PAHs含量越高,枯水期的关联性低于丰水期.饮用浅层地下水致PAHs暴露的累积非致癌风险HQ为2.21x10-3;累积致癌风险R为1.56x10-6,72.0%成人R大于1x10-6,枯水期BaA、BbF和InP对成人致癌风险的贡献分别为72.1%、9.10%和4.80%.枯水期沟塘水PAHs总量为低等生态风险,丰水期为中等风险,不同沟塘其生态风险不同.纳污的C5沟塘水丰水期PAHs为高生态风险水平,BaA的贡献最大(占40.7%);纳污和养殖的A2枯水期和C3沟塘水丰水期PAHs为中等风险2水平.综上,沟塘水PAHs与周边浅层地下水具有关联性,枯水期沟塘水PAHs总量具有低生态风险,饮用周边浅层地下水的致癌风险高于1x10-6.  相似文献   

14.
为研究焦化厂地下水中美国EPA优先控制的16种多环芳烃(PAHs)的分布特点和污染来源,本研究联合使用统计技术、正定矩阵因子分析(PMF)模型和风险商值法,深入分析了焦化厂地下水中PAHs的分布规律,定量解析了PAHs的污染来源,并且对其生态风险进行了科学评价.结果表明,焦化厂地下水中16种PAHs的总检出率较高,达到46.7%.地下水中∑16PAHs的浓度范围是n.d.~444.9μg·L-1,均值为1.88μg·L-1.不同生产车间地下水中PAHs的浓度存在明显差异,其中污染最重的车间位于焦油精制区,地下水中∑16PAHs的浓度为444.92μg·L-1.应用PMF源解析模型,识别出该焦化厂地下水中PAHs有二类污染源:一是石油的燃烧源,二是煤和生物质燃烧以及石油类的泄漏,二种污染源对焦化厂地下水中PAHs的贡献率分别为38.6%和61.4%.焦化厂地下水中∑16PAHs处在高生态风险等级,且有53.4%的地下水采样点单体PAHs的生态风险处在高风险等...  相似文献   

15.
2015年2月采集石家庄地区滹沱河冲洪积扇深层孔隙水地下水水样,采用气相色谱-质谱法测定了US EPA优先控制的多环芳烃(PAHs)和酞酸酯(PAEs),并对PAEs的饮水健康风险进行了评估.结果显示,7个采样点均检出PAHs和PAEs,∑PAHs范围为34.4~598.5ng/L,且2~3环PAHs的质量分数介于50%~83%;∑PAEs范围为27.6~25236.7ng/L,其中有3个点位∑PAEs达到20μg/L水平,且7个点位均以DBP、DEHP为主.与国内其他研究区相比,本研究区∑PAHs浓度与国内非岩溶地下水的污染水平接近,而∑PAEs浓度较高.饮水健康风险评估结果显示,仅G2点位的PAHs终生致癌风险指数小于US EPA推荐的可接受的水平(10-6),其致癌风险可以忽略外,其他点位均具有潜在致癌风险;而对于PAEs饮水终生致癌风险而言,G1、G6、G73个点位的PAEs终生致癌风险也均高于10-6,因此,研究区深层孔隙水中的PAHs和PAEs污染均应当引起重视.  相似文献   

16.
于2009年6月分别采集辽河和太湖表层沉积物样品,测定了多环芳烃(PAHs)和有机氯农药(OCPs)的含量.结果表明,辽河表层沉积物中∑PAHs含量(干重)为120.8~22120ng/g,平均值为3281ng/g,处于较高的水平;太湖∑PAHs的含量为256.6~1709ng/g,平均值为829.0ng/g,处于中等水平.两采样区的PAHs以4环和5~6环为主,荧蒽含量最高,PAHs主要因热解产生.辽河和太湖表层沉积物中OCPs的含量均处于较低水平,且均以β-HCH为主.利用相平衡分配法建立了15种PAHs和8种OCPs的沉积物基准值,对沉积物中PAHs和OCPs进行了生态风险评估,结果显示辽河流域的浑河段均有∑PAHs、∑DDTs和∑HCHs超标点位,具有较大的生态风险;太湖流域未发现超标点位,沉积物中各类污染物中含量均未超过基准值,生态风险较小.  相似文献   

17.
研究了漳卫南运河流域地表水中USEPA16种优先控制的多环芳烃(PAHs)的分布特征和污染来源,2008年4月、10月水中PAHs总量分别在31.7~74.5ng.L-1、45.3~99.0ng.L-1之间,与国内外其他河流相比,整体处于较低污染水平.四女寺污染最严重;河口污染最轻.整体上看,10月份PAHs浓度比4月份略有增加.从16种多环芳烃单体的组成来看,漳卫南运河PAHs以2环、3环、4环为主.本研究提出了新的∑PAHs生态风险评价方法,结果表明,4、10两个月份最高风险商值(RQ∑PAHs(MPCs))均为0,最低风险商值(RQ∑PAHs(NCs))值分别在34.7~111.0、20.4~88.8之间,平均值分别为58.4、49.8.∑PAHs在7个采样点均呈现低生态风险,且4月份生态风险略高于10月份,风险最高值出现在4月份的四女寺,最低值出现在10月份的河口.源解析结果显示,漳卫南运河流域PAHs的含量和分布主要受煤炭及薪柴燃烧的影响,四女寺和河口地区受到一定的石油污染的影响.  相似文献   

18.
利用气相色谱与质谱联用仪(GC-MS)对四川绵竹 阿坝剖面土壤中16种优控多环芳烃(PAHs)的含量及其来源进行了研究,并分析了土壤中PAHs的生态毒性风险.结果表明:研究区冬季和夏季土壤中∑16 PAHs的含量变化范围分别为32.78~1131.57 ng/g和64.5~461.29 ng/g,整体表现为冬季含量高于夏季,且与高程不存在相关性;冬季和夏季土壤中PAHs均主要来源于木材、煤的燃烧,部分采样点受石油燃烧污染;将土壤中多环芳烃苯并[a]芘的毒性当量(Bapeq)与荷兰目标值(32.96 ng/g)进行比较,结果显示夏季PAHs基本无潜在生态毒性风险,而冬季高度脆弱地区存在一定的潜在生态毒性风险.  相似文献   

19.
交通道路旁茶园多环芳烃的污染特征   总被引:4,自引:0,他引:4       下载免费PDF全文
采样分析了某交通道路旁茶园多介质环境中多环芳烃(PAHs)的浓度水平,探讨汽车尾气对茶鲜叶中PAHs 的影响.结果表明,茶园空气、土壤和茶组织中16 种PAHs 的总浓度(∑PAHs)分别为1780.0~4710.0ng/m3、n.d.(未检出)~35.9.0µg/kg 和100.00~885.00µg/kg,均随交通道路距离增加而降低,说明汽车尾气对茶园环境造成了PAHs 污染.但离交通道路50m 和250m 处的茶组织中的∑PAHs 差异不明显,说明汽车尾气对茶树的PAHs 污染主要局限在路旁50m 范围内.茶组织中∑PAHs 的大小顺序为老叶>须根>嫩叶>生产枝>主根,地上部分大于地下部分.嫩叶中PAHs 以3 环为主,占∑PAHs 的80.6%.老叶中4 环比例高于3 环,且5~6 环的比例显著高于嫩叶.在茶树生长过程中,茶鲜叶会逐渐积累环境中毒性更强的高环PAHs.  相似文献   

20.
渤海湾潮滩不同粒径沉积物中多环芳烃的分布   总被引:3,自引:2,他引:1       下载免费PDF全文
利用湿筛分离的方法,将采自渤海湾潮间带的沉积物分成0.063mm 3个不同的粒径组分,测定其16种EPA规定的多环芳烃(PAHs)含量、总有机碳(TOC)和碳黑(BC)含量.结果表明,不同粒径沉积物中∑PAHs含量范围在714~4870ng/g之间.在岐口(TS3)沉积物中,∑PAHs含量最高值出现在0.063mm粒径组分中.所有站点沉积物的0.031~0.063mm粒径组分中∑PAHs含量均为最低.尽管如此,有机碳标准化∑PAHs含量则随着沉积物粒径的增大呈现增加趋势.不同粒径沉积物中∑PAHs含量与BC含量之间呈现显著正相关关系,而与有机碳(OC=TOC-BC)含量之间的相关性较差.因此,不同粒径沉积物中BC的分布很可能在其中扮演着更重要的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号