首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大, pH值为7.5时,在15~35℃范围内, 30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

2.
以PHAs为固体碳源的城镇二级出水深度脱氮研究   总被引:1,自引:0,他引:1  
利用从连续运行的缓释碳源滤料滤池中取出的聚羟基脂肪酸酯(PHAs)颗粒,研究了微生物和硝酸盐对其的总有机碳(TOC)释放速率的影响,并研究了温度、pH值、硝态氮浓度对其反硝化速率的影响.结果表明:原有的和附着有微生物的PHAs颗粒在去离子水中TOC释放速率分别为0.030,0.053mg/(g·d),远低于水中有硝酸盐时的TOC释放速率[进水NO3--N为30mg/L时,TOC释放速率为0.533mg/(g·d)].温度和pH值对反硝化速率影响较大,pH值为7.5时,在15~35℃范围内,30℃下的反硝化速率最大,为0.067mg/(g·h);温度为30℃时,pH值在6.0~9.0范围内,pH值为7.8时的反硝化速率最大,达到0.061mg/(g·h).反硝化速率与NO3--N浓度之间的关系符合Monod方程,最大反应速率和半饱和常数分别为4.74mgNO3--N/(gSS·h)和56.6mg/L.  相似文献   

3.
环境条件变化对河流沉积物“三氮”释放的影响   总被引:1,自引:0,他引:1  
以京杭运河某断面沉积物和上覆水为研究对象,利用室内模拟试验探讨了3种环境条件(温度,曝气复氧,pH值)变化对河道沉积物"三氮"释放的影响。结果表明:5℃时上覆水氨氮和硝态氮累积量高于25℃,25℃时上覆水亚硝态氮累积量高于5℃,冬季低温条件下沉积物氨氮和硝态氮释放对上覆水的影响不容忽视。曝气复氧能抑制沉积物氨氮的释放和加速硝化作用而消耗氨氮,并促进亚硝态氮和硝态氮的生成,但是复氧初期可能致使上覆水氨氮含量上升。pH值越低,上覆水氨氮累积量越大,1 d后pH 4条件下的底泥氨累积量为pH 10时的1.8倍,pH 7~8.5条件下上覆水亚硝态氮累积速度最快,硝态氮累积速率最低。  相似文献   

4.
吕永涛  刘婷  曾玉莲  孙婷  张瑶  王磊 《环境科学》2017,38(5):1991-1996
为减少生物短程反硝化对外碳源的依赖,研究了无机环境下Fe(0)-活性炭强化短程反硝化的脱氮效果,并探究了不同铁碳比及初始pH值对系统脱氮效果及N+2O释放的影响.结果表明Fe(0)-活性炭可强化生物短程反硝化,将亚硝氮去除率由7.4%提高到31.1%.当m(铁)∶m(碳)由2∶1降至1∶1和1∶2时,反硝化速率与亚硝氮去除率均呈现先升后降的趋势,m(铁)∶m(碳)为1∶1时达到最大,分别为5.58 mg·(g·h)~(-1)与41.1%,且此时N+2O的释放量较小,为0.10 mg.当pH值由6.0升至9.0的过程中,反硝化速率由7.39 mg·(g·h)~(-1)下降至5.96 mg·(g·h)~(-1),N+2O的释放量由0.19 mg下降至0.12 mg.以上结果表明,在m(铁)∶m(碳)为1∶1和pH为弱酸性的条件下,Fe(0)-活性炭能强化短程反硝化获得较好的脱氮效果,但低pH值会增加N+2O的释放量.  相似文献   

5.
两种释碳材料的制备及其性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
闫续  许柯  耿金菊  任洪强 《中国环境科学》2012,32(11):1984-1990
应用固定化技术制备了包埋淀粉的聚乙烯醇(PVA)释碳材料和海藻酸钠(SA)释碳材料,采用红外光谱和扫描电镜对其物化特性进行分析,研究了二者的释碳性能以及作为碳源对硝态氮的去除效果.结果表明,PVA释碳材料中淀粉混合较好,释碳过程满足二级动力学方程,单位质量材料释放的饱和COD达到99.60mg/(g·L).在温度为18~22℃,pH7.2~8.0,硝态氮浓度为35mg/L的条件下,PVA释碳材料的平均反硝化速率为18.5g/(m3·d),SA释碳材料的平均反硝化速率为15.5g/(m3·d),在稳定运行15d后,出水硝态氮浓度逐渐升高,脱氮效果开始下降.  相似文献   

6.
以人工模拟废水为研究对象,采用3组SBR反应器(R_(15℃)、R_(25℃)、R_(35℃)),考察了温度对生物脱氮效能的影响。结果表明:15,25,35℃条件下,NH+4-N平均去除率分别为96.9%,98.3%和96.6%,均获得了较理想的氨氮去除效果;15~35℃温度范围内,温度每升高10℃,系统硝化速率提高1.35~1.84倍,反硝化速率提高2.30~2.34倍,且硝化和反硝化过程的温度系数(θ)分别为1.04和1.08,说明升高温度对反硝化反应的影响要大于硝化反应;硝化反应和反硝化反应的活化能(E_a)分别为33.4,61.9 k J/mol;Ni AR(亚硝态氮积累率)随着温度升高而增大(2.0%→23.1%→97.6%),高温条件有利于建立亚硝酸型生物脱氮机制。  相似文献   

7.
以人工模拟废水为研究对象,采用3组SBR反应器(R_(15℃)、R_(25℃)、R_(35℃)),考察了温度对生物脱氮效能的影响。结果表明:15,25,35℃条件下,NH+4-N平均去除率分别为96.9%,98.3%和96.6%,均获得了较理想的氨氮去除效果;15~35℃温度范围内,温度每升高10℃,系统硝化速率提高1.35~1.84倍,反硝化速率提高2.30~2.34倍,且硝化和反硝化过程的温度系数(θ)分别为1.04和1.08,说明升高温度对反硝化反应的影响要大于硝化反应;硝化反应和反硝化反应的活化能(E_a)分别为33.4,61.9 k J/mol;Ni AR(亚硝态氮积累率)随着温度升高而增大(2.0%→23.1%→97.6%),高温条件有利于建立亚硝酸型生物脱氮机制。  相似文献   

8.
何腾霞  倪九派  李振轮  孙权  冶青  徐义 《环境科学》2016,37(3):1082-1088
分别采用高浓度的铵态氮、硝态氮、亚硝态氮、有机氮模拟废水和铵态氮与硝态氮、铵态氮与亚硝态氮混合模拟废水,研究耐冷反硝化细菌Arthrobacter arilaitensis Y-10的异养硝化、好氧反硝化以及同时硝化和反硝化能力,通过测定Y-10菌株在整个脱氮过程中的D600值,分析细菌生长与生物脱氮之间的联系.结果表明,耐冷菌株Arthrobacter arilaitensis Y-10具有很强的硝化和反硝化能力,15℃条件下,4 d内分别可将铵态氮由208.43 mg·L~(-1)降至72.92 mg·L~(-1),去除率65.0%;硝态氮由201.16mg·L~(-1)降至0 mg·L~(-1),去除率为100%;亚硝态氮由194.33 mg·L~(-1)降至75.43 mg·L~(-1),去除率为61.2%.该菌只在含硝态氮的模拟废水中才会产生亚硝态氮积累;此外,在混合模拟废水中,以去除铵态氮为主.总之,Arthrobacter arilaitensis Y-10能在15℃条件下有效进行异养硝化和好氧反硝化作用,在不同无机氮混合模拟废水中对铵态氮的去除率高达80.0%以上.  相似文献   

9.
不同碳源材料用于污水厂尾水生物反硝化碳源的效果研究   总被引:6,自引:0,他引:6  
针对污水厂尾水氮素高度硝化的现状,通过正交试验研究了不同固体碳源在不同的反应时间、硝氮进水浓度、碳源比例及温度条件下的反硝化速率及对硝态氮的去除率.结果表明,以麦秆为碳源去除硝氮最优条件是温度为25℃,反应时间为10h,进水硝氮浓度为30 mg·L-1,麦秆与水的质量比为1:50;以PHAs为碳源去除硝氮的最优条件是温...  相似文献   

10.
采用批式实验研究了不同初始pH值下反硝化包埋颗粒在反应过程中NO_2~--N、NO_3~--N、TN和pH值的变化规律,并探究了反硝化包埋颗粒的动力学特性.结果表明,在进水NO_3~--N为30mg/L,反应温度控制在30℃,C/N比为6,反应周期为5h条件下,反硝化污泥经包埋后经过2周的适应性培养即表现出很好的反硝化性能,不同的初始pH值下,反硝化过程中NO_3~--N的去除主要在0~lh内,NO_2~--N的积累在1h时达到最大,同时pH值出现拐点,在1h达到最大后略有降低,这一拐点可以作为亚氮积累达到最大时的指示参数.动力学研究表明,反硝化最大比反硝化速率K_(den)出现在pH=7.5和8.0时,为2.9mgNO_x~--N/(gMLVSS·h),表明最适宜反硝化包埋颗粒的pH值为7.5~8.0,TN去除率在91.7%以上.通过硝酸盐氮的比反硝化速率和亚硝酸盐氮的比反硝化速率的比较,可知在反硝化过程中硝酸盐氮的还原速率都大于亚硝酸盐氮的还原速率,是造成亚氮积累的原因.  相似文献   

11.
从杭州市天子生活岭垃圾填埋垃圾渗滤液调节池周围土壤样品中分离到一株异养硝化-好氧反硝化细菌ZB612,通过形态学观察及16S rDNA同源性分析,初步鉴定属于根瘤菌属(Rhizobium sp.).随后研究了该菌株的脱氮能力,结果表明在初始氨氮浓度为100mg/L异养硝化培养基中,氨氮的去除效率达到90%,未出现明显的硝态氮和亚硝态氮积累,具有同步硝化反硝化特征;在亚硝酸盐反硝化体系中,亚硝态氮的去除效率达到60%.除此还考察了四种单因素 (温度、pH值、碳氮比和碳源种类) 分别对菌株ZB612脱氮效率的影响:该菌株的最佳脱氮条件为温度30℃,初始pH=7,C/N=8,以葡萄糖作为最适碳源.  相似文献   

12.
餐厨垃圾水解酸化液作碳源的脱氮效果研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对餐厨垃圾水解酸化液作外加碳源的反硝化脱氮效果进行研究,考察了人工配水条件下水解酸化液反硝化处理的适宜COD/NO3--N比范围,在适宜COD/NO3--N比条件下与甲醇、乙酸钠的反硝化效果进行对比,并验证了水解酸化液对于生活污水的反硝化效果.结果表明,人工配水条件下利用水解酸化液作碳源的适宜COD/NO3--N比为4.9~6.0,反硝化速率最高可达25.0mg NO3--N/(gVSS·h).反应过程存在2个不同的硝态氮去除速率阶段,并出现了亚硝氮积累.餐厨垃圾水解酸化液为含多种VFA成分的混合物,其反应过程中硝态氮的去除速率比甲醇、乙酸钠等纯物质做碳源时的硝态氮去除速率快.将餐厨垃圾水解酸化液用于生活污水脱氮处理,当COD/NO3--N比为6时,水中的硝态氮以及亚硝氮均能够得到较为彻底的去除.  相似文献   

13.
以腐朽木为碳源去除废水中硝酸盐氮的研究   总被引:9,自引:8,他引:9  
采用室内装置研究了腐朽木的碳源释放规律,并考察其作为碳源和反应介质的水解-反硝化生物反应器对污水中硝酸盐氮的去除效果.结果表明,腐朽木可有效地释放碳源物质,接种腐殖质组腐朽木释放COD和挥发性脂肪酸(VFA)总量分别是灭菌组的2.3倍和5倍;室温25℃±1℃,进水NO-3-N浓度为30 mg/L,水力停留时间为12 h时,水解-反硝化反应器可获得很好的反硝化效果,保持去除率80%以上稳定运行46 d后,出水硝酸盐氮逐步升高,运行过程中未发现亚硝氮累积.  相似文献   

14.
猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究   总被引:1,自引:5,他引:1  
王欢  李旭东  曾抗美 《环境科学》2009,30(1):114-119
在常温(13~20℃)、不调节pH的条件下,采用短程硝化反硝化预处理低C/N(2左右)猪场废水,考察了反硝化与亚硝化过程,并以经过短程硝化反硝化预处理的猪场废水为进水,分析了厌氧氨氧化的脱氮效果.结果表明,采用短程硝化反硝化预处理低C/N猪场废水,可以达到去除部分COD、部分脱氮、控制出水氨氮和亚硝态氮浓度之比在1∶1左右、pH在7.5~8.0左右的目的,为厌氧氨氧化创造了进水条件,全程COD和总氮平均去除率分别为64.3%和49.1%;经过短程硝化反硝化预处理的猪场废水,其厌氧氨氧化脱氮效果稳定,氨氮、亚硝态氮、总氮的平均去除率分别为91.8%、99.3%、84.1%.  相似文献   

15.
从胶州湾海底沉积物中分离筛选出一株异养硝化-好氧反硝化菌株y6,通过菌株y6的形态以及生理生化特性和16S rRNA基因序列的分析,鉴定该菌株属于克雷伯氐菌属(Klebsiella sp.).在不同的环境条件下,测定菌株y6的生长情况和脱氮能力,研究其同步脱氮除碳特性.实验结果表明,菌株y6的最佳碳源为柠檬酸三钠,最适宜pH值为7.0,最适合的C/N为17.菌株y6在以NH_4C1、KNO_3和NaNO_2为唯一氮源的反应系统中均有较好的脱氮效果,去除率分别为99.67%、100%、99.20%.菌株y6在脱氮的同时能高效地去除有机物,COD的去除率分别为82.17%、95.75%和97.83%.菌株y6在硝化过程中没有亚硝态氮和硝态氮的积累.在按不同比例混合氮源的反应系统内,首先进行的是硝态氮的好氧反硝化,随后进行的是氨氮、亚硝态氮和COD的去除.在有亚硝态氮存在时氨氮的去除率略低,亚硝态氮会影响y6的异养硝化过程,异养硝化对好氧反硝化过程没有影响.  相似文献   

16.
冬季低温条件下,污水脱氮效果容易变差。研究了在低温(10±1)℃条件下,投加介体1,2-萘醌-4磺酸(NQS)对生物反硝化脱氮的影响。实验结果表明:当硝态氮的浓度为65~85 mg/L,温度控制在(10±1)℃条件时,生物的反硝化脱氮性能变差,但投加介体后可以显著改善这种性能,硝态氮的浓度从开始的84.27 mg/L降为64.34 mg/L,与空白实验硝态氮去除率的15.78%相比,投加介体可以使硝态氮的去除率提高到23.65%,脱氮速率达2.66 mg NO_x~--N/(g VSS·h)。  相似文献   

17.
采用模拟硝酸盐污染地下水(简称模拟水)驯化培养反硝化菌,并对初始pH对反硝化菌脱氮能力的影响进行研究。研究结果表明:反硝化菌在初始pH分别为7.0、7.5、8.0、8.5的模拟水中生长速率较快,且反硝化进行到16 h时对应硝态氮的平均还原速率最大,分别为5.48,5.52,5.41,5.50 mg/(L·h),明显高于初始pH为6.5和6.0时3.47,4.67 mg/(L·h)的最大平均还原速率;在反硝化进行到36 h时,初始pH为7.0~8.5的模拟水中的总氮去除率均达到90%以上,pH为7.5时总氮去除率最高,为97.1%。  相似文献   

18.
本试验采用室内试验装置,研究了 pH、温度、硝酸盐浓度对锯末+乙醇作为混合碳源去除地下水中硝酸盐的影响结果表明,pH值在5~10内变化时对锯末+乙醇混合碳源体系的硝酸盐去除率影响较大,pH >7时的硝酸盐去除率明显高于pH <7时的去除率;并且随着pH值的增加,亚硝酸盐的积累量越多,锯末+乙醇混合碳源体系最佳的pH值范围是7~8.锯末+乙醇混合碳源体系受温度的影响较大,温度为8.5、15℃时的反硝化速率显著低于25℃时的速率,25℃时的反硝化速率分别是8.5、15℃时的3倍和1.5倍,锯末+乙醇混合碳源体系适宜的温度范围为25 ~35℃进水硝酸盐浓度也会影响锯末+乙醇混合碳源体系的反硝化效果,硝酸盐氮浓度在67.8 ~113 mg·L-1范围内变化时,反应体系的硝酸盐去除效果较好反应初期,硝酸盐浓度越大混合碳源体系的反硝化速率就越低,可能较大的硝酸盐负荷对反硝化细菌产生毒害作用而不利于硝酸盐的去除.  相似文献   

19.
以麦秆作为好氧反硝化碳源的研究   总被引:5,自引:0,他引:5  
采用室内试验装置,研究以麦秆为碳源和反应介质的生物反应器在好氧条件下去除地下水中硝酸盐的影响因素和效果。结果表明,以麦秆为碳源的反应器启动快,反硝化反应受温度及水力停留时间影响大。28℃时N的去除量约33℃的3倍。当室温为(27±1)℃,进水硝酸盐氮浓度为50mg/L、水力停留时间56.85h时,反应器对氮的去除率在94.64%以上;当水力停留时间为12h时,氮去除率<50%。同时反硝化反应受pH值和进水NO3--N浓度的影响。当pH值为6.7时,N的去除率最高,达90%以上。反硝化速率与NO3--N浓度显著呈线性关系。  相似文献   

20.
生物硝化过程是导致生物脱氮过程N_2O释放的重要因素。文章利用小试反应器,采用连续进水的方式,考察了不同pH下氨氧化菌(AOB)硝化过程氨氮氧化速率(AOR)和氧化亚氮释放速率(N_2OR)之间的关系。pH影响动力学结果表明,pH=6.5和8.5时,AOB的比耗氧速率(SOUR)分别降至其最大值(SOUR_(max),pH=7.5)的50%。不同氧化还原酶具有不同的最适pH值(pH_(opt)),pH的变化导致硝化过程不同中间产物的积累。其中,一氧化氮还原酶、亚硝态氮还原酶和氧化亚氮还原酶对生物硝化过程中N_2O释放起着重要作用。pH=6.0~7.5之间,AOR和N_2OR随pH的增加而增加,p H=7.5时,其N_2OR和AOR分别达最大值(0.34±0.08)和(16.30±1.25)mgN/(gVSS·h)。此后,随pH的增加而逐渐降低。不同pH下,N_2OR和AOR呈线性关系。AOR增加,为AOB好氧反硝化过程提供了更多的电子,导致更多N_2O释放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号