共查询到18条相似文献,搜索用时 125 毫秒
1.
为了全覆盖、高分辨率和高精度识别京津冀地区大气PM2.5质量浓度时空变化,选取多角度大气校正算法遥感反演的1km AOD为主要预测因子,多种气象要素和土地利用要素为辅助预测因子,构建了混合效应模型+地理加权回归模型的两阶段统计模型,并针对京津冀地区PM2.5污染较严重的特点,模型中引入了AOD2等独特预测因子.通过上述两阶段模型定量预测了研究区2017年1 km2空间分辨率的每日PM2.5质量浓度.结果表明,模型交叉验证的决定系数R2为0.94,斜率为0.95,均方根预测误差为13.14 μg·m-3,在前人基础上预测精度进一步提升,可用于PM2.5浓度时空变化预测与分析.2017年,京津冀地区PM2.5浓度年均值为44.96 μg·m-3,年均值范围在0~89.89 μg·m-3之间.PM2.5浓度时空变化差异性明显,整体上呈现"平原西南部浓度高、平原东北部浓度中等和山区高原浓度低"的空间分布格局以及"冬季浓度高、夏季浓度低和春秋过渡"的季节变化特点.模型预测结果的高时空分辨率可以支持流行病学研究在较小区域的暴露评估和识别小尺度污染源的时空变化,分析发现在大气污染防治行动计划实施以来,污染较严重的冀中南山麓平原区可能出现了重要污染源的空间变化.模型预测与分析结果可以为京津冀大气污染防治提供科学支撑. 相似文献
2.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因. 相似文献
3.
基于GIS技术和岭回归分析方法,采用苏锡常地区的MODIS高分辨率气溶胶光学厚度资料、PM_(2.5)浓度观测资料和苏锡常及周边地区的气象观测资料,构建了基于气溶胶光学厚度和气象要素的PM_(2.5)地面浓度分布估算模型,模拟了2013年春季苏锡常地区PM_(2.5)的空间分布状况,并将此模型与气象要素多元回归模型、气溶胶光学厚度直接回归模型进行比较.结果表明:该模型将遥感观测资料与地面气象观测资料相结合,能够有效地模拟PM_(2.5)的空间分布状况;2013年春季苏锡常地区PM_(2.5)的空间分布具有整体上西北高、东南低,中心城区高、城郊区低的趋势,局部高浓度区域可能与工业生产、交通等人为因素有关;该模型能够在保持较高精度的前提下,有效地突出局部地区的变化特征,体现出更强的空间分异性,对于研究PM_(2.5)的空间分布规律具有一定的实际应用价值. 相似文献
4.
随着我国经济、工业化、城市化进程迅速发展,PM_(2.5)污染在中国已经成为一个极端的环境和社会问题,并引起广泛关注.采用新技术估算的地表PM_(2.5)质量浓度,收集并处理了遥感反演的气溶胶光学厚度(AOD),气象数据,其他地理数据和污染物排放数据,采用贝叶斯最大熵(BME)结合地理加权回归(GWR)来分析2015年冬季的PM_(2.5)暴露在我国东部大范围区域的时空变异特征.结果表明,BME模型的十折交叉验证结果的决定系数R~2为0.92,均方根误差(RMSE)为8.32μg·m~(-3),平均拟合误差(MPE)为-0.042μg·m~(-3),平均绝对拟合误差(MAE)为4.60μg·m~(-3),与地理加权回归模型的结果相比(R~2=0.71,RMSE=15.68μg·m~(-3),MPE=-0.095μg·m~(-3),MAE=11.14μg·m~(-3)),BME的预测结果有极大的提高.空间上,PM_(2.5)高浓度地区主要集中在华北、长江三角洲、四川盆地,低浓度地区主要集中在中国的最南部如珠江三角洲和云南的西南部;时间上,不同月份的研究区域PM_(2.5)空间分布所有差别,2015年的12月、2016年1月PM_(2.5)污染最为严重,2015年的11月,2016年的2月污染相对较低. 相似文献
5.
京津冀区域PM2.5污染相互输送特征 总被引:1,自引:1,他引:1
基于CAMx-PSAT空气质量模型,对2015年京津冀区域PM_(2.5)污染及相互输送特征进行定量模拟,建立了京津冀13个城市的PM_(2.5)传输矩阵.结果表明,在年均尺度上京津冀区域PM_(2.5)以本地污染源贡献为主(21.49%~68.74%),传输贡献为辅,其中区域内传输贡献约为13.31%~54.62%,区外贡献约为13.32%~45.02%.PM_(2.5)传输特征呈现显著的时空差异性,区域中部城市唐山、北京、天津、保定和石家庄PM_(2.5)受本地贡献主导,在冬季尤其明显,而受传输影响较大的城市多分布在区域边界且在南部集中.区内作为汇的城市有廊坊、衡水、承德、秦皇岛和邢台,作为源的城市有天津、沧州、唐山、北京、石家庄和邯郸,张家口和保定对区内城市输出和受区内输入基本持平.典型城市分析证明城市间PM_(2.5)污染交互影响,北京与廊坊、保定、承德、天津和沧州等城市之间,天津与廊坊、唐山、北京、沧州和保定等城市之间,石家庄与邢台、衡水、保定、邯郸和廊坊之间均存在显著的PM_(2.5)相互输送. 相似文献
6.
对2016年宁夏回族自治区大气中PM2.5浓度的时空分布特征及其与其它空气质量指标和气象参数之间的相关性进行探讨。结果表明,宁夏回族自治区2016年PM2.5日平均浓度为2.0~217.5 μg/m3;11月、12月、1月、2月PM2.5月浓度均值(45.97~87.22 μg/m3)相对较高,6~9月的(19.01~38.03 μg/m3)相对较低;春、夏、秋、冬PM2.5浓度分别为2.00~211.00 μg/m3、6.67~106.67 μg/m3、10.67~166.00 μg/m3和10.50~217.50 μg/m3;0:00~23:00,各城市PM2.5小时浓度基本上表现出先下降、后上升、再下降、再上升的变化规律,通常上午9:00~10:00浓度值较高,下午15:00~16:00浓度值较低。银川市、石嘴山市、吴忠市、中卫市和固原市2016年PM2.5日平均浓度 ≤ 75 μg/m3的天数分别为304 d、307 d、313 d、323 d和340 d,年达标率分别为83%、84%、86%、88%和93%。宁夏北部的石嘴山市、银川市的PM2.5月浓度均值超过了南部的中卫市和固原市,表现出"北高南低"的趋势,其中固原市每月PM2.5浓度均值均低于其他城市,表现出显著差异。PM2.5浓度与CO、NO2、SO2、PM10浓度、风速、气压、日照和相对湿度均呈显著或极显著正相关关系,与地表温度、气温和降水量呈极显著或显著负相关关系。可见,宁夏回族自治区大气PM2.5浓度具有明显的时空变化特征,其浓度受气象因子的影响。 相似文献
7.
海陆风环流对沿海和内陆城市的大气污染物浓度有重要作用,基于风廓线雷达数据、大气PM2.5和O3质量浓度数据等分析了上海及周边地区海陆风局地环流的特征及其对区域大气污染物PM2.5和O3浓度变化的影响.研究结果表明:该区一年四季均会发生海陆风,海陆风发生的年平均日数为37.8 d.海陆风频率和强度在滨海高于内陆.海风持续时间在滨海大于内陆,而陆风持续时间滨海小于内陆.夏季的海风强度最强,其内陆地区风速和强度均小于沿海地区.海陆风导致该区的PM2.5浓度降低和沿海地区O3浓度升高.风向风速对污染物PM2.5和O3的影响在滨海地区比内陆地区更加显著.滨海地区的PM2.5污染主要来自西北方向(WNW、NW 、和NNW),西北风(NW)和偏南方向的风 (SSW、S、和SSE)会分别导致夏季和春季的O3浓度增大.随着风速增加,O3浓度增大,大约当风速在 3~4 m?s-1 时增加到峰值,然后逐渐减小.海陆风对沿海地区的O3及其前体物等污染物的循环输送及其引起的湍流混合使得沿海地区的O3变化变得很复杂. 相似文献
8.
利用卫星遥感反演气溶胶光学厚度(AOD)已成为获取宏观、连续空气污染信息的一种有效手段.通过构建AOD-PM_(2.5)的关联模型是实现空间范围内PM_(2.5)监测的主要方法,而气象要素是该模型中的重要输入参数,直接影响到模型模拟的精度.当前诸多模型多采用地面气象要素,缺乏对于不同高度气象要素及其变化对构建AOD-PM_(2.5)关联模型的影响研究.本文以淮河流域五省为例,在实测地面气象资料的基础上,利用再分析气象资料,考虑了从地面至高空不同高度处的气象要素及其垂直变化,运用多元逐步回归方法,对比了地面与不同高度气象要素及其变化量对AOD-PM_(2.5)关联模型的贡献程度.结果表明:①AOD-PM_(2.5)关联模型在不同站点、不同季节的差异仍较为明显,不同高度及随高度变化的气象要素对提高春季AOD-PM_(2.5)关联模型的精度有较显著影响;②考虑了不同高度气象要素及垂直变化的多元逐步回归线性模型的表现优于仅考虑地面气象要素的模型,尤其是春季的改善较明显,RMSE降幅达到近43%;③基于地理加权回归方法的AOD-PM_(2.5)关联模型的估算结果略优于多元逐步回归线性模型. 相似文献
9.
北京地区不同时段平均PM2.5浓度与MODIS气溶胶光学厚度相关性分析 总被引:1,自引:0,他引:1
利用2014年北京市12个空气质量监测站的逐小时PM_(2.5)地面观测资料,以及Terra和Aqua卫星的MODIS气溶胶光学厚度(AOD)产品,在时间和空间数据匹配的基础上,研究了PM_(2.5)的5 h(10:00—14:00)和24 h(0:00—23:00)两种时段平均浓度及两颗卫星平均AOD的时空分布特征,并建立了AOD与不同时段平均PM_(2.5)浓度之间的回归模型.结果表明:PM_(2.5)的5 h平均浓度和24 h平均浓度值均在城区高、郊区低,最低值位于定陵站;匹配后逐时PM_(2.5)浓度的日变化呈"双峰型",最低值出现在下午,但北京西北部郊区的定陵和昌平镇站因局地山谷风环流和外部排放源的影响,其"双峰型"波动趋势较城区站偏弱,最低值出现在上午;AOD的空间分布特征与PM_(2.5)浓度分布一致,但在郊区由于污染水平分布不均,卫星采集的样本可能来自于周围的清洁大气,导致AOD的最小值在郊区站点明显低于城区站点;两颗卫星平均的AOD与5h PM_(2.5)平均浓度的决定系数高于AOD与24 h PM_(2.5)平均浓度的决定系数;AOD与PM_(2.5)的相关系数在城区高于郊区,郊区排放源分布不均和强的局地系统性环流是造成其相关系数低的重要原因. 相似文献
10.
利用LUR模型模拟杭州市PM2.5质量浓度空间分布 总被引:2,自引:0,他引:2
模拟城市大气污染物浓度空间分布对研究城市空气质量及人体健康至关重要.本研究利用土地利用回归模型(Land Use Regression,LUR),提取包括污染点源因子、交通因子、人口因子、土地利用因子和气象因子等60个预测因子,基于地理加权算法(GWR)建立春、夏、秋、冬四个季节的模型,实现对杭州地区近地表PM_(2.5)质量浓度空间分布的预测.结果表明:基于地理加权回归算法时,检验模型的R2值分别达到0.76(春季)、0.70(夏季)、0.73(秋季)、0.76(冬季),模型能够解释PM_(2.5)浓度值80%以上的变异.每个季度杭州地区PM_(2.5)浓度变化不尽相同,但总体以杭州中部最高,西南部偏低.研究说明基于LUR模型模拟大尺度地区PM_(2.5)质量浓度空间分布是可行的. 相似文献
11.
为揭示京津冀地区高精度PM2.5的时空分布特征,以空间分辨率为1 km的MAIAC AOD数据为主要预测因子,以气象数据、植被指数、夜间灯光数、人口密度和海拔数据作为辅助因子,构建了一种新的时空混合效应模型(STLME),在拟合最优次区域划分方案基础上对京津冀地区PM2.5浓度进行预测分析.结果表明,基于STLME模型的ρ(PM2.5)预测精度高于传统的线性混合效应模型(LME),其十折交叉验证(CV)R2为0.91,明显高于LME模型的0.87,说明STLME模型在同时校正PM2.5-AOD关系的时空异质性方面具有优势.最优次区域划分方案识别出PM2.5-AOD关系的空间差异,并结合缓冲区平滑方法,提高了STLME模型预测精度.京津冀PM2.5浓度时空变化差异显著,高值区主要分布在以石家庄、邢台和邯郸为中心的河北南部,低值区则位于燕山-太行山区;冬季PM2.5污染最严重,其次是秋季和春季,夏季污染最轻.STLM... 相似文献
12.
BP网络框架下MODIS气溶胶光学厚度产品估算中国东部PM2.5 总被引:4,自引:4,他引:4
近年来随着中国经济的快速发展,中国区域的大气污染情况日趋严重,大气污染监测与治理已刻不容缓.由于卫星遥感具有较广的空间覆盖、成本低等优点,卫星遥感反演气溶胶光学厚度(AOD)产品被普遍认为是地面PM2.5浓度的重要指标,且已被广泛地应用于地面PM2.5遥感监测.利用2007~2008年的MODIS/Terra气溶胶光学厚度产品,考虑中国东部地区5个大气成分站点风速、风向、温度、湿度和边界层高度等气象数据,构建后向(BP)神经网络,提出了基于MODIS AOD产品估算PM2.5的模型.利用5个大气成分站点PM2.5观测数据对模型进行散点拟合和时间序列拟合验证,结果表明:①从PM2.5观测值与估算值的散点回归分析来看,PM2.5估算值与观测值相关系数最好的为庐山站(R=0.6),其它4个站次之,但其相关系数均在0.4(中强相关)以上;②从PM2.5观测值与估算值的时间序列比对分析来看,PM2.5估算值和观测值差值随时间变化而变化,且存在明显的日际振荡现象,但经相邻5 d滑动平均处理,5个站点的PM2.5估算值与观测值相关系数得到普遍提升,滑动后的相关系数RMA均在0.7以上(除郑州外),庐山RMA达到0.83.结果表明在BP网络框架下,基于MODIS AOD产品估算PM2.5的模型能较好地应用于PM2.5监测. 相似文献
13.
基于徐州市2014~2017年气溶胶光学厚度(AOD)、地面监测站PM_(2.5)浓度及气象数据,构建经标高订正的AOD(AOD/H)与经湿度订正的PM_(2.5)(PM_(2.5)×f_((RH)))之间的5种不同类型的拟合模型,分析两者在不同季节的相关性;同时利用经验模态分解对AOD/H与PM_(2.5)×f_((RH))进行周期变化分析。结果表明:AOD与PM_(2.5)浓度直接相关程度较低,经过订正后两者的相关程度显著提高;选取乘幂模型为最优拟合模型,利用乘幂模型估计得到的PM_(2.5)浓度与地面监测的经湿度订正的PM_(2.5)浓度呈显著正相关,相关系数在四季分别达到0.752、0.650、0.808和0.942;利用经验模态分解分析得到AOD/H与PM_(2.5)×f_((RH))具有显著的年周期变化特征,均在冬季出现高值,后逐渐降低,在6月前后出现极小值,到秋季又逐渐增大;AOD/H与PM_(2.5)×f_((RH))年变化特征表现出很高的一致性(r=0.888),表明在徐州地区AOD/H对PM_(2.5)×f_((RH))在年周期尺度变化特征研究中能起到良好的指示作用。 相似文献
14.
对京津冀区域2013年9月至2018年2月连续5个秋冬季PM_(2.5)的污染特征和气象影响因素,2015年10月至2018年2月连续3个秋冬季以及典型污染过程时NAQPMS、CMAQ和CAMx这3个模式PM_(2.5)的预报结果进行了分析评估,对模式预报的不确定性和改进措施进行了探讨.结果表明,5个秋冬季PM_(2.5)区域均值浓度分别为122、98、82、99和65μg·m-3,污染过程(中度及以上污染过程)期间浓度分别为229、198、210、204和180μg·m-3. 5个秋冬季累计发生64次PM_(2.5)为首要污染物的区域污染过程,2013~2014年秋冬季污染过程平均持续时间最长,2017~2018年持续时长最短.除2016~2017年外,其他年份PM_(2.5)浓度峰值和均值逐年降低,区域总体污染形势减轻.秋冬季PM_(2.5)浓度与相对湿度、风速和日照时数相关性相对较好,与温度和气压的相关性整体较弱.当风速小于2 m·s-1、大气相对湿度65%以上、主导风向为西南和东北风时,容易出现区域中度及以上污染过程.此外,3个模式均能够预测出京津冀区域秋冬季PM_(2.5)污染过程,预报值与监测值体现了较好地相关性.3个模式对张家口、承德和秦皇岛的预报结果较好,对唐山、石家庄、保定、北京和天津等城市预报偏高,这与污染源清单、气象初始场和气象预报、以及大气化学反应机制的不确定性有一定关系. 相似文献
15.
基于2014~2018年京津冀及周边地区MAIAC AOD和PM2.5质量浓度数据,探讨AOD和PM2.5质量浓度的时空差异,并利用线性回归探讨两者之间的相关性.结果表明,PM2.5日均浓度超标天数分别占33%和57%(执行世界卫生组织IT.1和IT.2日均标准值),污染较为严重.Terra、Aqua MAIAC AOD和PM2.5年均浓度均呈下降趋势,PM2.5浓度呈现出冬春季高、夏秋季低的特点,而Terra、Aqua AOD则表现为春夏季高、秋冬季低.PM2.5及AOD的季均和年均浓度均呈现"北低南高"的区域分布特征,高值区主要位于河北南部、山西南部、山东西部以及河南北部,低值区主要位于山西北部、河北北部以及山东东部.PM2.5年均浓度介于27~99μg·m-3,AOD年均值介于0.20~0.69.Aqua AOD与PM2.5浓度的相关性更高,且不同季节Terra、Aqua AOD与PM2.5相关性差异显著,总体均表现为春冬季良好,夏秋季相对较差.对卫星AOD进行垂直和湿度订正后,其与PM2.5的相关性显著提高. 相似文献
16.
为准确评估京津冀地区采暖期实施“煤改电”政策带来的健康效益,估算了京津冀地区各区县采暖期“煤改电”政策实施前后PM2.5污染导致的过早死亡人数,并采用支付意愿法计算了相应的健康损失价值.结果表明,京津冀地区“煤改电”政策实施后带来了1 745人(95%CI:1 443~1 907)健康效益和23.78亿元(95%CI:14.50~30.63)经济效益.北京、天津及河北地区的健康效益分别为495人(95%CI:436~554)、 296人(95%CI:238~354)及954人(95%CI:693~1 076).经济效益分别为3.50亿元(95%CI:3.08~3.92)、 3.32亿元(95%CI:2.67~3.96)及16.96亿元(95%CI:8.75~22.75),分别占各地区GDP的0.01%、 0.02%及0.04%. COPD、 LC、 ALRI、 IHD、 STROKE减少的死亡人数分别为187人(95%CI:165~224)、 318人(95%CI:178~458)、 193人(95%CI:115~204)、 506人(95%CI:232~780)... 相似文献
17.
京津冀郊区站点秋冬季大气PM2.5来源解析 总被引:3,自引:0,他引:3
为了增进对京津冀地区大气PM_(2.5)来源情况的认识,于2014~2015年秋冬季在京津冀地区4个郊区站点进行了PM_(2.5)的采样,并用化学质量平衡模型(chemical mass balance model,CMB)进行了PM_(2.5)源解析工作.结果表明:二次颗粒物(36%~58%)、交通(8%~26%)、民用燃煤(8%~16%)和生物质燃烧(5%~16%)是京津冀郊区站点秋冬季PM_(2.5)的主要贡献源.其中,二次硝酸盐是大部分站点秋冬季PM_(2.5)的首要贡献源(11%~27%).不同污染程度的源解析显示,冬季各站点各污染源在重污染天的贡献变化趋势的同步性不如秋季明显,且秋季二次源在重污染天的贡献增加值(47. 2~115. 7μg·m~(-3))明显高于一次源(29. 5~43. 4μg·m~(-3)),但此现象在冬季不显著.对比北京市城区源解析结果,发现郊区燃煤总贡献率较为相似,但郊区燃煤源中多以民用燃煤为主,这说明对于京津冀城郊地区,控制民用燃煤源对PM_(2.5)污染控制有重要意义. 相似文献
18.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑. 相似文献