首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From 1998 to 2008, 68 adult female loggerhead sea turtles (Caretta caretta) were instrumented with platform transmitter terminals at nesting beaches in Georgia, North Carolina (NC) and South Carolina (SC) on the East Coast of the United States of America (30°48′N, 81°28′W to 33°51′N, 77°59′W). The majority of post-nesting loggerheads (N = 42, 62 %) migrated to foraging habitats in the Mid-Atlantic Bight during May–October, with a subsequent migration occurring during November–March to foraging habitats south of Cape Hatteras, NC. Nine (13 %) loggerheads initially foraged in the near-shore, coastal areas of the South Atlantic Bight, but moved to offshore habitats—closer to the Gulf Stream—during November–March, while fourteen (21 %) loggerheads remained in foraging areas along the mid-continental shelf off of the eastern coast of Florida and/or continued southward to Florida Bay and the Bahamas. The present study delineates important, post-nesting foraging habitats and migration corridors where loggerheads may interact with commercial fisheries—providing managers opportunities to develop and implement optimally effective conservation actions for the recovery of this threatened species.  相似文献   

2.
The sea anemone Entacmaea quadricolor simultaneously harbours multiple symbiont types from the genus Symbiodinium, while providing essential habitat for anemonefish. This anemone lives close to its upper thermal threshold and experiences bleaching under elevated temperature and light stress. Here, we determine whether E. quadricolor experienced a shuffling in the abundance of two genetically distinct symbiont types (Symbiodinium C25 and C3.25) during bleaching and recovery. Anemones were exposed to control (22.9 °C) or elevated temperature (28.5 °C) for 42 days, whereas for the following 75 days, all anemones were exposed to 22.9 °C. By day 47, a more pronounced bleaching occurred via symbiont expulsion in the elevated temperature treatment than the control, and the proportion of C25 to C25 + C3.25 increased by 6.2 and 13.2 % in the control and bleached anemones, respectively. The increased relative abundance of C25 to C3.25 after exposure to thermal stress may indicate that C3.25 performs poorly when temperature is elevated. Although no significant recovery in symbiont density was detected, a revival of the C3.25 genotype was found at day 117, which may indicate that it is either more competitive or has qualities that are beneficial to the symbiosis when thermal stress is no longer apparent. This work demonstrates the potential for this anemone species to shuffle its symbiont types in response to environmental change and could provide resilience during times of stress.  相似文献   

3.
Marine sponges harbor dense and highly diverse bacterial communities, and some percentage of the microflora appears to be specialized for the sponge habitat. Bacterial diversity was examined in Chondrilla nucula Schmidt to test the hypothesis that some subset of sponge symbiont communities is highly similar regardless of the species of host or habitat requirements of the host. C. nucula was collected from a mangrove channel on Lower Matcumbe Key in the Florida Keys (25°53′N; 80°42′W) in August 1999. Domain-specific universal bacterial primers were used to amplify the 16S rDNA gene from genomic DNA that had been extracted from sponges and the surrounding water. An RFLP technique was used to assess diversity of sponge-associated and environmental bacterial communities. The clone library from C. nucula contained 21 operational taxonomic units (OTUs). None of the 53 OTUs from adjacent water samples were found in the C. nucula library indicating that a distinct community was present in the sponge. Sequence analysis indicated that C. nucula harbors a microbial community as diverse as the microbes from other sponges in different habitats around the world. Phylogenetic analysis placed several C. nucula clones in clades dominated by bacteria that appear to be sponge specialists (e.g., Acidobacteria, Bacteroidetes, and Cyanobacteria). Proportional representation of major bacterial taxonomic groups represented in symbiont communities was compared as a function of geographic location of sponge hosts. This study supports the hypothesis that sponges from different oceans existing in dissimilar habitats harbor closely related bacteria that are distinct from other bacterial lineages and appear specialized for residing within sponges.  相似文献   

4.
Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of intercohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects” design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoc analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a heterospecific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.  相似文献   

5.
High-rocky-shore intertidal animals are predicted to be generally more vulnerable to climate warming than lower-shore species, because their thermal tolerances lie closer to maximum environmental temperatures (T e). However, this prediction is based on taxonomically and ecologically limited information. The present study investigated the effect of habitat use on climate warming vulnerability of the tropical high-shore snail, Echinolittorina malaccana (from Brunei Darussalam, 5°N), which aestivates in sun-exposed or shaded habitats. The thermal regimes of these habitats differed vastly, but snails showed similar daily energy consumption in either habitat, due to temperature-insensitive metabolism (TIM) between 35 and 46 °C in the sun-resting snails. However, maximum T e values in the shade and the sun were 35 and 46 °C, respectively, suggesting that sun-resting snails, which presently experience temperatures near the incipient lethal temperature range (46–56 °C), should be more threatened by further warming than shade-resting snails, which have an 11 °C ‘safety margin’. Thus, vulnerability of high-shore species to climate warming could be moderated by availability of shaded habitat, making predictions for these species more complex than previously realized.  相似文献   

6.
The habitat experienced during early life-history stages can determine the number and quality of individuals that recruit to adult populations. In a field experiment, biogenic habitat complexity was manipulated (presence or absence of foliose macroalgae) at two depths (2–3 m and 5–6 m) and the habitat-dependent effects on recruitment of the black foot abalone (Haliotis iris) were examined at three field sites along the south coast of Wellington, New Zealand (41°20′S, 174°47′E), between July and November 2005. Recruit density (<5 weeks post-settlement) was measured on cobbles covered with crustose coralline algae. Habitats of low complexity (barrens treatments) had consistently greater densities of recruits than habitats of high complexity (algae treatments). However, recruits in algae habitats were larger, and for deep habitats, there was greater survival in algae habitats compared with barrens habitats. While depth had no significant effect on early recruit (<2 weeks post-settlement) density, late recruit (<5 weeks post-settlement) density was greater in shallow habitats, and so it seems recruit survival was greater in shallow habitats. In this experiment, algal habitat complexity had strong effects on early recruit abundance, but habitat-dependent variations in recruit growth and survival may modify initial patterns of abundance and determine recruitment to adult abalone populations.  相似文献   

7.
The sea urchin cardinalfish, Siphamia tubifer (Perciformes: Apogonidae), is unusual among coral reef fishes for its use of bioluminescence, produced by symbiotic bacteria, while foraging at night. As a foundation for understanding the relationship between the symbiosis and the ecology of the fish, this study examined the diel behavior, host urchin preference, site fidelity, and homing of S. tubifer in June and July of 2012 and 2013 at reefs near Sesoko Island, Okinawa, Japan (26°38′N, 127°52′E). After foraging, S. tubifer aggregated in groups among the spines of the longspine sea urchin, Diadema setosum, and the banded sea urchin, Echinothrix calamaris. A preference for D. setosum was evident (P < 0.001), especially by larger individuals (>25 mm standard length, P < 0.01), and choice experiments demonstrated the ability of S. tubifer to recognize and orient to a host urchin and to conspecifics. Tagging studies revealed that S. tubifer exhibits daily fidelity to a host urchin; 43–50 and 26–37 % of tagged individuals were associated with the same urchin after 3 and 7 days. Tagged fish also returned to their site of origin after displacement; by day two, 23–43 and 27–33 % of tagged individuals returned from displacement distances of 1 and 2 km. These results suggest that S. tubifer uses various environmental cues for homing and site fidelity; similar behaviors and cues might be used by larvae for recruitment to settlement sites and for the acquisition of luminous symbiotic bacteria.  相似文献   

8.
The thermal envelope of development to the larval stage of two echinoids from eastern Australia was characterized to determine whether they fill their potential latitudinal ranges as indicated by tolerance limits. The tropical sand dollar, Arachnoides placenta, a species that is not known to have shifted its range, was investigated in Townsville, northern Australia (19°20′S, 146°77′E), during its autumn spawning season (May 2012). The subtropical/temperate sea urchin, Centrostephanus rodgersii, a species that has undergone poleward range expansion, was investigated in Sydney, southern Australia (33°58′S, 151°14′E), during its winter spawning season (August 2012). The thermal tolerance of development was determined in embryos and larvae reared at twelve temperatures. For A. placenta, the ambient water temperature near Townsville and experimental control were 24 °C and treatments ranged from 14 to 37 °C. For C. rodgersii, ambient Sydney water temperature and experimental control were 17 °C, and the treatment range was 9–31 °C. A. placenta had a broader developmental thermal envelope (14 °C range 17–31 °C) than C. rodgersii (9 °C range 13–22 °C). Both species developed successfully at temperatures well below ambient, suggesting that cooler water is not a barrier to poleward migration for either species. Both species presently live near the upper thermal limits for larval development, and future ocean warming could lead to contractions of their northern range limits. This study provides insights into the factors influencing the realized and potential distribution of planktonic life stages and changes to adult distribution in response to global change.  相似文献   

9.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   

10.
Temperature and salinity are important environmental factors affecting the normal functioning of marine animals, particularly animals such as sea urchins living in shallow waters and tide pools. Here, we evaluated the effect of different combinations of temperature and salinity on early embryos of the endemic New Zealand sea urchin Evechinus chloroticus. Animals were collected at Matheson’s Bay (36º18′17′′S; 174º47′51′′E) in north-eastern New Zealand in February 2013. Embryos were exposed to five salinities (29, 31, 34, 35 and 37 ppt) and two temperatures (18 and 21 °C) during the first 24 h of development. Low salinity (29 ppt) affected all parameters (fertilization, development rate, gastrulation and normal development), with ca. 50 % of embryos surviving at 29 ppt, whereas seawater temperature only affected development rate and gastrulation. An increase in temperature from 18 to 21 °C minimized the negative effect of low salinity (≤31 ppt) on development rate and gastrulation of E. chloroticus. Overall, the results of this study suggest that early embryos of E. chloroticus have developmental plasticity to withstand reductions in salinity up to 29 ppt; however, it is still unknown whether the surviving embryos will be able to complete larval development at low salinities, particularly whether the embryos and larvae are carried into extreme environments such as estuaries where salinity is even lower. Multistressor studies are very important for climate change research as multiple environmental factors will act together in the wild, having major consequences for development and recruitment of marine invertebrates.  相似文献   

11.
Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 μmol photons m?2 s?1. Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.  相似文献   

12.
The aim of the present study was to evaluate, for the first time, the effect of environmental warming on the metabolic and behavioral ecology of a temperate seahorse, Hippocampus guttulatus. More specifically, we compared routine metabolic rates, thermal sensitivity, ventilation rates, food intake, and behavioral patterns at average spring temperature (18 °C), average summer temperature (26 °C), temperatures that they endure during summer heat wave events (28 °C), and in a near-future warming scenario (+2; 30 °C) in Sado estuary, Portugal. Both newborn juveniles and adults showed significant increases in metabolic rates with rising temperatures. However, newborns were more impacted by future warming via metabolic depression (i.e., heat-induced hipometabolism). In adult stages, ventilation rates also increased significantly with environmental warming, but food intake remained unchanged. Moreover, the frequency of swimming, foraging, swinging, and inactivity did not significantly change between the different thermal scenarios. Thus, we provide evidence that, while adult seahorses show great resilience to heat stress and are not expected to go through any physiological impairment and behavioral change with the projected near-future warming, the early stages display greater thermal sensitivity and may face greater metabolic challenges with potential cascading consequences for their growth and survival.  相似文献   

13.
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7′N, 12°1.1′W) and spawned in July 2011. Larvae were exposed to Ambient (400 μatm CO2), MidCO2 (700 μatm), or HighCO2 (1,000 μatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.  相似文献   

14.
Trachurus capensis is an important fisheries resource in the degraded Namibian upwelling ecosystem. Food supply and shoaling of hypoxic zones are hypothesised to influence the species’ recruitment success. This paper is the first to quantify energy requirements and hypoxia tolerance of larval and juvenile stages of a Trachurus species. We measured normoxic respiration rates of T. capensis with a size range from 0.001 to 20.8 g wet mass (WM) collected off Cape Town (33.9°S, 18.5°E, 12/2009) and in the northern Benguela (17–24°S, 11–15°E, 02/2011). Routine metabolic rate (RMR) and standard routine rate (SRR) (mg O2 h?1) followed the allometric functions RMR = 0.418 WM0.774 and SRR = 0.275 WM0.855, respectively. Larvae and juveniles had comparatively high metabolic rates, and the energy demand of juveniles at the upper end of the size range appeared too high to be fuelled by a copepod diet alone. T. capensis’ early life stages showed a high tolerance to hypoxic conditions. RMR in larvae did not change until 30 % O2sat at 18 °C. In juveniles, critical oxygen saturation levels were low (PC for SRR = 11.2 ± 1.7 % O2sat and PC for RMR = 13.2 ± 1.6 % O2sat at 20 °C) and oxy-regulation effective (regulation index = 0.78 ± 0.09). A high hypoxia tolerance may facilitate the retention of larvae in near-shore waters providing favourable feeding conditions and allowing juveniles to exploit food resources in the oxygen minimum zone. These mechanisms seem to well adapt T. capensis to a habitat affected by spreading hypoxic zones and probably enhance its recruitment success.  相似文献   

15.
Growth, age and somatic production of the benthic predator Odontocymbiola magellanica were studied in Golfo Nuevo (42°S 65°W), on the South American Atlantic shelf. Stable oxygen isotope ratios confirmed semiannual formation of internal and external shell growth marks. Mean shell length (SL) of females was 115 and 112 mm for males, while population modal shell-free wet mass (SFWM) was 62.8 g. A Gompertz growth function (SL= 200 mm, K = 0.197, t 0 = 5.486) fitted 113 pairs of size-at-age data (12 shells) best. O. magellanica is a long-lived species, reaching up to 20 years of age. The maximum individual somatic production of 29.3 g SFWM per year is attained at 145 mm SL, which corresponds to about 12 years of age. The life span of this volutid seems to be twice compared with other large gastropods. O. magellanica is a valuable and exploitable resource regarding its large size and somatic production, but on the other hand, its slow growth, late maturity and direct development makes it extremely vulnerable to overexploitation.  相似文献   

16.
The ocean sunfish (Mola mola) is typically considered to feed on gelatinous zooplankton, but reports in the literature describe various benthic organisms being found in their stomachs. This might reflect ontogenetic dietary shift, as little was known about the foraging habit of this species. We examined their foraging habits using dietary analyses in combination with a behavioral study in Iwate, Japan (39°22′N, 141°58′E) from 2009 to 2010. Our stomach content analyses (n = 17, 31–250 cm total length) suggested that small sunfish (<50 cm) feed on benthic crustaceans, but large sunfish (>200 cm) feed on jellyfish. Larger sunfish showed higher values of both carbon and nitrogen stable isotope ratios. Deployment of accelerometers and animal-borne cameras on small sunfish in July (49–58 cm, n = 5) suggested their possibility of feeding, while they stayed near the seabed. This indicates that small sunfish might feed on benthic preys. Deployment of accelero-magnetometers on large sunfish in July (84–164 cm, n = 4) clarified that the large sunfish in July swam back and forth between the surface and deep water (>100 m). Temporary decelerations, which were considered to be associated with feeding of planktonic prey, were observed in deep water. Whereas deployment of accelero-magnetometers on large sunfish in November (105 cm, n = 3) showed several bursts, they swam within the mixed layer (0–100 m), which might be associated with chasing of rapid prey. These results suggest that ocean sunfish have heterogeneous diets depending on their body size and possibly season.  相似文献   

17.
The northern range limit of the intertidal limpet Lottia scabra is Cape Arago, Oregon (43°N), where adult survival is excellent, the population is small (<300), and recruitment is low; the range limit may be set by limited recruitment. Between June 2012 and March 2013, 25 sites from the middle of the species range (33°N) to Cape Arago were sampled and population size frequency distributions, densities, and nearest neighbor distances were compared to the amount of rocky and sandy shore and kelp bed size. North and south of 37°N, the densities of new recruits averaged 22 and 86 m?2, respectively. This shift was associated with the range limit of Macrocystis pyrifera kelp beds; we hypothesize that slower currents in M. pyrifera beds may limit larval dispersal leading to higher recruitment. North and south of 40°N, adult density averaged <1 and 458 m?2, respectively, with the species absent from many sites to the north. This shift was associated with a sharp drop in the amount of rocky shoreline and an increase in uninhabitable sandy shore. Near the northern range limit, >80 % of the individuals were solitary and may be unable to spawn successfully. Recruitment at Cape Arago was infrequent and likely due to self-recruitment. This study suggests that the range limit was set by the absence of M. pyrifera and too little rocky shore leading to high larval wastage, low settlement, low population densities, and, due to an Allee effect, very small effective population sizes.  相似文献   

18.
Elucidation of life-history traits is essential to understand larval dispersal and population dynamics in marine benthic assemblages. This study is the first investigation of the life history of a recently described hippolytid shrimp from a deep-sea chemosynthetic environment, Lebbeus virentova Nye, Copley, Plouviez and Van Dover, 2013 at the Von Damm Vent Field (18°22N, 81°47W, ~2,300 m depth, Mid-Cayman Spreading Centre, Caribbean), using samples collected in February and June 2013. Lebbeus virentova is gonochoric and iteroparous. The sex ratio of L. virentova was significantly female biased (1:3) in February and June. The sampled population of L. virentova had a unimodal size–frequency distribution pattern in February and June, consistent with continuous recruitment and mortality. Continuous reproduction is indicated by a lack of synchrony in oocyte size–frequency distributions within both months, and asynchronous development of embryos among females, which may result in asynchronous larval release. A large embryo size in this species (2.65 ± 0.28 mm diameter) compared with other caridean shrimps suggests possible abbreviated larval development, as described in other species of the genus from non-chemosynthetic environments. Fecundity (26–94 embryos female?1) was lower and embryo size larger in L. virentova compared with alvinocaridids at chemosynthetic environments. This suggests that there are phylogenetic constraints on reproductive features of decapods at hydrothermal vents.  相似文献   

19.
Between 2002 and 2008, samples of the cold-water scleractinian coral Lophelia pertusa were collected from the Trondheim Fjord in Norway to examine reproductive periodicity. Collections were made from three locations: Tautra, (63°35.36′N, 10°31.23′E at 40–70 m), Stokkbergneset (63°28.18′N, 09°54.73′E at 110–500 m), and Røberg (63°28.88′N, 09°59.50′E at 250 m). Populations of L. pertusa from the Trondheim Fjord initiated oogenesis in January and spawning occurred from late January to early March the following year. Gametogenic cycles of the female L. pertusa samples overlapped by approximately 2 months, with oogonia visible in January, but this was not evident in the males. This paper provides the most complete gametogenic cycle to date and spawning observations for this important structure-forming species. The results from fjord populations are compared with published and preliminary data from other regions and are discussed in the context of regional differences in physical and biological variables, particularly food supply. Differences in gametogenic cycles within a single species provide a rare opportunity (especially in deep-sea species) to examine potential drivers of reproduction.  相似文献   

20.
Climate models predict that the average temperature in the North Sea could increase 3–5 °C and surface-waters pH could decrease 0.3–0.5 pH units by the end of this century. Consequently, we investigated the combined effect of decreased pH (control pH 8.1; decreased pH 7.6) and temperature (control 6.7 °C; elevated 9.5 °C) on the hatching timing and success, and the zoeal development, survival, feeding, respiration and growth (up to stage IV zoea) of the northern shrimp, Pandalus borealis. At elevated temperature, embryos hatched 3 days earlier, but experienced 2–4 % reduced survival. Larvae developed 9 days faster until stage IV zoea under elevated temperature and exhibited an increase in metabolic rates (ca 20 %) and an increase in feeding rates (ca 15–20 %). Decreased pH increased the development time, but only at the low temperature. We conclude that warming will likely exert a greater effect on shrimp larval development than ocean acidification manifesting itself as accelerated developmental rates with greater maintenance costs and decreased recruitment in terms of number and size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号