首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.  相似文献   

2.
Marine protected areas (MPAs) cover 3–7% of the world's ocean, and international organizations call for 30% coverage by 2030. Although numerous studies show that MPAs produce conservation benefits inside their borders, many MPAs are also justified on the grounds that they confer conservation benefits to the connected populations that span beyond their borders. A network of MPAs covering roughly 20% of the Channel Islands National Marine Sanctuary was established in 2003, with a goal of providing regional conservation and fishery benefits. We used a spatially explicit bioeconomic simulation model and a Bayesian difference-in-difference regression to examine the conditions under which MPAs can provide population-level conservation benefits inside and outside their borders and to assess evidence of those benefits in the Channel Islands. As of 2017, we estimated that biomass densities of targeted fin-fish had a median value 81% higher (90% credible interval: 23–148) inside the Channel Island MPAs than outside. However, we found no clear effect of these MPAs on mean total biomass densities at the population level: estimated median effect was –7% (90% credible interval: –31 to 23) from 2015 to 2017. Our simulation model showed that effect sizes of MPAs of <30% were likely to be difficult to detect (even when they were present); smaller effect sizes (which are likely to be common) were even harder to detect. Clearly, communicating expectations and uncertainties around MPAs is critical to ensuring that MPAs are effective. We provide a novel assessment of the population-level effects of a large MPA network across many different species of targeted fin-fish, and our results offer guidance for communities charged with monitoring and adapting MPAs.  相似文献   

3.
Marine protected areas (MPAs) are a commonly applied solution to coral reef degradation, yet coral reefs continue to decline worldwide. We argue that expanding the range of MPAs to include degraded reefs (DR‐MPA) could help reverse this trend. This approach requires new ecological criteria for MPA design, siting, and management. Rather than focusing solely on preserving healthy reefs, our approach focuses on the potential for biodiversity recovery and renewal of ecosystem services. The new criteria would help identify sites with the highest potential for recovery and the greatest resistance to future threats (e.g., increased temperature and acidification) and sites that contribute to MPA connectivity. The DR‐MPA approach is a compliment rather than a substitute for traditional MPA design approaches. We believe that the DR‐MPA approach can enhance the natural, or restoration‐assisted, recovery of DRs and their ecosystem services; increase total reef area available for protection; promote more resilient and better‐connected MPA networks; and improve conditions for human communities dependent on MPA ecosystem services.  相似文献   

4.
Protected areas (PAs) are expected to conserve nature and provide ecosystem services in perpetuity, yet widespread protected area downgrading, downsizing, and degazettement (PADDD) may compromise these objectives. Even iconic protected areas are vulnerable to PADDD, although these PADDD events are often unrecognized. We identified 23 enacted and proposed PADDD events within World Natural Heritage Sites and examined the history, context, and consequences of PADDD events in 4 iconic PAs (Yosemite National Park, Arabian Oryx Sanctuary, Yasuní National Park, and Virunga National Park). Based on insights from published research and international workshops, these 4 cases revealed the diverse pressures brought on by competing interests to develop or exploit natural landscapes and the variety of mechanisms that enables PADDD. Knowledge gaps exist in understanding of the conditions through which development pressures translate to PADDD events and their impacts, partially due to a lack of comprehensive PADDD records. Future research priorities should include comprehensive regional and country-level profiles and analysis of risks, impacts, and contextual factors related to PADDD. Policy options to better govern PADDD include improving tracking and reporting of PADDD events, establishing transparent PADDD policy processes, coordinating among legal frameworks, and mitigating negative impacts of PADDD. To support PADDD research and policy reforms, enhanced human and financial capacities are needed to train local researchers and to host publicly accessible data. As the conservation community considers the achievements of Aichi Target 11 and moves toward new biodiversity targets beyond 2020, researchers, practitioners, and policy makers need to work together to better track, assess, and govern PADDD globally.  相似文献   

5.
6.
Marine protected areas (MPAs) are a primary tool for the stewardship, conservation, and restoration of marine ecosystems, yet 69% of global MPAs are only partially protected (i.e., are open to some form of fishing). Although fully protected areas have well-documented outcomes, including increased fish diversity and biomass, the effectiveness of partially protected areas is contested. Partially protected areas may provide benefits in some contexts and may be warranted for social reasons, yet social outcomes often depend on MPAs achieving their ecological goals to distinguish them from open areas and justify the cost of protection. We assessed the social perceptions and ecological effectiveness of 18 partially protected areas and 19 fully protected areas compared with 19 open areas along 7000 km of coast of southern Australia. We used mixed methods, gathering data via semistructured interviews, site surveys, and Reef Life (underwater visual census) surveys. We analyzed qualitative data in accordance with grounded theory and quantitative data with multivariate and univariate linear mixed-effects models. We found no social or ecological benefits for partially protected areas relative to open areas in our study. Partially protected areas had no more fish, invertebrates, or algae than open areas; were poorly understood by coastal users; were not more attractive than open areas; and were not perceived to have better marine life than open areas. These findings provide an important counterpoint to some large-scale meta-analyses that conclude partially protected areas can be ecologically effective but that draw this conclusion based on narrower measures. We argue that partially protected areas act as red herrings in marine conservation because they create an illusion of protection and consume scarce conservation resources yet provide little or no social or ecological gain over open areas. Fully protected areas, by contrast, have more fish species and biomass and are well understood, supported, and valued by the public. They are perceived to have better marine life and be improving over time in keeping with actual ecological results. Conservation outcomes can be improved by upgrading partially protected areas to higher levels of protection including conversion to fully protected areas.  相似文献   

7.
8.
This paper examines a 3-yr EU LIFE-funded project for the management of two especially protected areas on the Maltese coast. Project partners are the Euro-Mediterranean Centre on Insular Coastal Dynamics (ICoD), the Gaia Foundation and the Ministry for the Environment of Malta. Project sites are the Ghajn Tuffieha area on the northwest coast of Malta, and the Ramla Bay area on the island of Gozo. While both sites are in a relatively pristine state and comprise a number of features of ecological and scientific importance, they are also prime recreational areas, hosting thousands of visitors especially during the summer months. The challenge is to manage these sites in a sustainable manner in order to protect their unique ecology while simultaneously controlling and managing the human activities taking place there. The following sequence of activities is being implemented at both sites: surveys of the resources present (biodiversity, habitats, geological and hydrological features, and archaeological heritage), implementation of first intervention measures, and the drawing up and implementation of site-specific management plans, including rehabilitation and protection of biodiversity and habitats, regulations for site use, and awareness raising and educational measures. The management structure of this project supports the concept of decentralization of management of protected areas, through the granting of responsibility for the direct management of these sites to a non-governmental organization, under joint government/EU funding. This paper thus presents the project as a model for similar initiatives for the management of protected sites in the Mediterranean.  相似文献   

9.
Mapping and predicting the potential risk of fishing activities to large marine protected areas (MPAs), where management capacity is low but fish biomass may be globally important, is vital to prioritizing enforcement and maximizing conservation benefits. Drifting fish aggregating devices (dFADs) are a highly effective fishing method employed in purse seine fisheries that attract and accumulate biomass fish, making fish easier to catch. However, dFADs are associated with several negative impacts, including high bycatch rates and lost or abandoned dFADs becoming beached on sensitive coastal areas (e.g., coral reefs). Using Lagrangian particle modeling, we determined the potential transit of dFADs in a large MPA around the Chagos Archipelago in the central Indian Ocean. We then quantified the risk of dFADs beaching on the archipelago's reefs and atolls and determined the potential for dFADs to pass through the MPA, accumulate biomass while within, and export it into areas where it can be legally fished (i.e., transit). Over one-third (37.51%) of dFADs posed a risk of either beaching or transiting the MPA for >14 days, 17.70% posed a risk of beaching or transiting the MPA for >30 days, and 13.11% posed a risk of beaching or transiting the MPA for >40 days. Modeled dFADs deployed on the east and west of the perimeter were more likely to beach and have long transiting times (i.e., posed the highest risk). The Great Chagos Bank, the largest atoll in the archipelago, was the most likely site to be affected by dFADs beaching. Overall, understanding the interactions between static MPAs and drifting fishing gears is vital to developing suitable management plans to support enforcement of MPA boundaries and the functioning and sustainability of their associated biomass.  相似文献   

10.
Spatially explicit information on species distributions for conservation planning is invariably incomplete; therefore, the use of surrogates is required to represent broad‐scale patterns of biodiversity. Despite significant interest in the effectiveness of surrogates for predicting spatial distributions of biodiversity, few researchers have explored questions involving the ability of surrogates to incidentally represent unknown features of conservation interest. We used the Great Barrier Reef marine reserve network to examine factors affecting incidental representation of conservation features that were unknown at the time the reserve network was established. We used spatially explicit information on the distribution of 39 seabed habitats and biological assemblages and the conservation planning software Marxan to examine how incidental representation was affected by the spatial characteristics of the features; the conservation objectives (the minimum proportion of each feature included in no‐take areas); the spatial configuration of no‐take areas; and the opportunity cost of conservation. Cost was closely and inversely correlated to incidental representation. However, incidental representation was achieved, even in a region with only coarse‐scale environmental data, by adopting a precautionary approach that explicitly considered the potential for unknown features. Our results indicate that incidental representation is enhanced by partitioning selection units along biophysical gradients to account for unknown within‐feature variability and ensuring that no‐take areas are well distributed throughout the region; by setting high conservation objectives that (in this case >33%) maximize the chances of capturing unknown features incidentally; and by carefully considering the designation of cost to planning units when using decision‐support tools for reserve design. The lessons learned from incidental representation in the Great Barrier Reef have implications for conservation planning in other regions, particularly those that lack detailed environmental and ecological data.  相似文献   

11.
Globally, marine protected areas (MPAs) have been relatively unsuccessful in meeting biodiversity objectives. To be effective, they require some alteration of people's use and access to marine resources, which they will resist if they do not perceive associated benefits. Stakeholders’ support is crucial to ecological success of MPAs, and their support is likely to depend on their capacity to adapt to and benefit from MPAs. We examined the influence of social adaptive capacity (SAC) on perceived benefits of MPAs in Siquijor, Philippines, in the Coral Triangle. This region has substantial biodiversity and a population of over 120 million people, many of them dependent on marine resources for food and income. The region has many MPAs, most of which are managed under decentralized governance systems. We collected survey data from 540 households in 19 villages with associated MPAs. We evaluated the influence of multiple SAC variables (e.g., occupational multiplicity and social capital) on perceived benefits with decision trees (CHAID) and qualitatively analyzed this relationship with respect to types and recipients of benefits. Our models revealed the key role of social capital, particularly trust in leadership, in influencing perceptions of benefits (χ2 = 14.762, p = 0.000). A path analysis revealed that perceptions of distributional equity were a key mechanism through which social capital affected perceived MPA benefits (root mean‐square error of approximation = 0.050). Building social capital and equity within communities could lead to more effective management of MPAs and thus to expenditure of fewer resources relative to, for example, regulation enforcement.  相似文献   

12.
In order to properly determine the efficacy of marine protected areas (MPAs), a seascape perspective that integrates ecosystem elements at the appropriate ecological scale is necessary. Over the past four decades, Hawaii has developed a system of 11 Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discrete sampling units. Digital benthic habitat maps for all MLCDs and adjacent habitats were used to evaluate the efficacy of existing MLCDs using a spatially explicit stratified random sampling design. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that a number of fish assemblage characteristics (e.g., species richness, biomass, diversity) vary among habitat types, but were significantly higher in MLCDs compared with adjacent fished areas across all habitat types. Overall fish biomass was 2.6 times greater in the MLCDs compared to open areas. In addition, apex predators and other species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations within their boundaries. Habitat type, protected area size, and level of protection from fishing were all important determinates of MLCD effectiveness with respect to their associated fish assemblages. Although size of these protected areas was positively correlated with a number of fish assemblage characteristics, all appear too small to have any measurable influence on the adjacent fished areas. These protected areas were not designed for biodiversity conservation or fisheries enhancement yet still provide varying degrees of protection for fish populations within their boundaries. Implementing this type of biogeographic process, using remote sensing technology and sampling across the range of habitats present within the seascape, provides a robust evaluation of existing MPAs and can help to define ecologically relevant boundaries for future MPA design in a range of locations.  相似文献   

13.
Harnessing the economic potential of the oceans is key to combating poverty, enhancing food security, and strengthening economies. But the concomitant risk of intensified resource extraction to migratory species is worrying given these species contribute to important ecological processes, often underpin alternative livelihoods, and are mostly already threatened. We thus sought to quantify the potential conflict between key economic activities (5 fisheries and hydrocarbon exploitation) and sea turtle migration corridors in a region with rapid economic development: southern and eastern Africa. We satellite tracked the movement of 20 loggerhead (Caretta caretta) and 14 leatherback (Dermochelys coriacea) turtles during their postnesting migrations. We used movement‐based kernel density estimation to identify migration corridors for each species. We overlaid these corridors on maps of the distribution and intensity of economic activities, quantified the extent of overlap and threat posed by each activity on each species, and compared the effects of activities. These results were compared with annual bycatch rates in the respective fisheries. Both species’ 3 corridors overlapped most with longline fishing, but the effect was worse for leatherbacks: their bycatch rates of approximately 1500/year were substantial relative to the regional population size of <100 nesting females/annum. This bycatch rate is likely slowing population growth. Artisanal fisheries may be of greater concern for loggerheads than for leatherbacks, but the population appears to be withstanding the high bycatch rates because it is increasing exponentially. The hydrocarbon industry currently has a moderately low impact on both species, but mining in key areas (e.g., Southern Mozambique) may undermine >50 years of conservation, potentially affecting >80% of loggerheads, 33% of the (critically endangered) leatherbacks, and their nesting beaches. We support establishing blue economies (i.e., generating wealth from the ocean), but oceans need to be carefully zoned and responsibly managed in both space and time to achieve economic (resource extraction), ecological (conservation, maintenance of processes), and social (maintenance of alternative livelihood opportunities, alleviate poverty) objectives.  相似文献   

14.
Elasmobranch stock assessment studies are usually made through fisheries surveys data. However, in large marine protected areas (MPAs) the use of destructive techniques must be dismissed in order to avoid population impacts. In 2005, while conducting a marine habitat survey in two marine Special Areas of Conservation (Sebadales de Playa de Inglés and Franja Marina de Mogán) in south Gran Canary Island (Canary Islands, Spain) with underwater towed video (UTV) and underwater visual census (UVC) transects, we recognized the opportunity rose to assess elasmobranch populations through UTV. Number of observed species and specimens, overall field work effort and total surveyed area were determined and compared between methods. Mean observations per day per unit of time (MOPUT) and mean observations per day per unit of surveyed area (MOPUA) were also compared through Mann–Whitney rank sum statistical test (α = 0.05). Data analysis demonstrated that UTV is a very useful tool to rapidly assess elasmobranch populations in large MPAs in good visibility underwater environments. It can assess larger areas than UVC with the same effort (statistically significant difference found for the MOPUT; p =< 0.001), leading to more observed species (5 vs 2) and specimens (46 vs 3) per day of work, with no loss in resolution power (MOPUA values were not significantly different between UTV and UVC; p = 0.104).  相似文献   

15.
Although marine protected areas can simultaneously contribute to biodiversity conservation and fisheries management, the global network is biased toward particular ecosystem types because they have been established primarily in an ad hoc fashion. The optimization of trade‐offs between biodiversity benefits and socioeconomic values increases success of protected areas and minimizes enforcement costs in the long run, but it is often neglected in marine spatial planning (MSP). Although the acquisition of spatially explicit socioeconomic data is perceived as a costly or secondary step in MSP, it is critical to account for lost opportunities by people whose activities will be restricted, especially fishers. We developed an easily reproduced habitat‐based approach to estimate the spatial distribution of opportunity cost to fishers in data‐poor regions. We assumed the most accessible areas have higher economic and conservation values than less accessible areas and their designation as no‐take zones represents a loss of fishing opportunities. We estimated potential distribution of fishing resources from bathymetric ranges and benthic habitat distribution and the relative importance of the different resources for each port of total catches, revenues, and stakeholder perception. In our model, we combined different cost layers to produce a comprehensive cost layer so that we could evaluate of trade‐offs. Our approach directly supports conservation planning, can be applied generally, and is expected to facilitate stakeholder input and community acceptance of conservation.  相似文献   

16.
Marine protected areas (MPAs) are the preferred tool for preventing marine biodiversity loss, as reflected in international protected area targets. Although the area covered by MPAs is expanding, there is a concern that opposition from resource users is driving them into already low-use locations, whereas high-pressure areas remain unprotected, which has serious implications for biodiversity conservation. We tested the spatial relationships between different human-induced pressures on marine biodiversity and global MPAs. We used global, modeled pressure data and the World Database on Protected Areas to calculate the levels of 15 different human-induced pressures inside and outside the world's MPAs. We fitted binomial generalized linear models to the data to determine whether each pressure had a positive or negative effect on the likelihood of an area being protected and whether this effect changed with different categories of protection. Pelagic and artisanal fishing, shipping, and introductions of invasive species by ships had a negative relationship with protection, and this relationship persisted under even the least restrictive categories of protection (e.g., protected areas classified as category VI under the International Union for Conservation of Nature, a category that permits sustainable use). In contrast, pressures from dispersed, diffusive sources (e.g., pollution and ocean acidification) had positive relationships with protection. Our results showed that MPAs are systematically established in areas where there is low political opposition, limiting the capacity of existing MPAs to manage key drivers of biodiversity loss. We suggest that conservation efforts focus on biodiversity outcomes and effective reduction of pressures rather than prescribing area-based targets, and that alternative approaches to conservation are needed in areas where protection is not feasible.  相似文献   

17.
For elaboration of strategy and spatial planning of sustainable coastal regions development it??s very important to know a real potential of development of the region. As parameter, which is comprehensively characterized marine economic, political and military power of the coastal region, it is possible to use the marine economy potential with comprehensive estimations of socio-economic, political, environment and military profits (damages) from coastal planning decisions. Some results, including the European and Russian coastal regions are presented.  相似文献   

18.
Marine protected areas (MPAs) are used to protect species, communities, and their associated habitats, among other goals. Measuring MPA efficacy can be challenging, however, particularly when considering responses at the community level. We gathered 36 abundance and 14 biomass data sets on fish assemblages and used meta‐analysis to evaluate the ability of 22 distinct community diversity metrics to detect differences in community structure between MPAs and nearby control sites. We also considered the effects of 6 covariates—MPA size and age, MPA size and age interaction, latitude, total species richness, and level of protection—on each metric. Some common metrics, such as species richness and Shannon diversity, did not differ consistently between MPA and control sites, whereas other metrics, such as total abundance and biomass, were consistently different across studies. Metric responses derived from the biomass data sets were more consistent than those based on the abundance data sets, suggesting that community‐level biomass differs more predictably than abundance between MPA and control sites. Covariate analyses indicated that level of protection, latitude, MPA size, and the interaction between MPA size and age affect metric performance. These results highlight a handful of metrics, several of which are little known, that could be used to meet the increasing demand for community‐level indicators of MPA effectiveness.  相似文献   

19.
Large marine protected areas (MPAs) of unprecedented size have recently been established across the global oceans, yet their ability to meet conservation objectives is debated. Key areas of debate include uncertainty over nations’ abilities to enforce fishing bans across vast, remote regions and the intensity of human impacts before and after MPA implementation. We used a recently developed vessel tracking data set (produced using Automatic Identification System detections) to quantify the response of industrial fishing fleets to 5 of the largest MPAs established in the Pacific Ocean since 2013. After their implementation, all 5 MPAs successfully kept industrial fishing effort exceptionally low. Detected fishing effort was already low in 4 of the 5 large MPAs prior to MPA implementation, particularly relative to nearby regions that did not receive formal protection. Our results suggest that these large MPAs may present major conservation opportunities in relatively intact ecosystems with low immediate impact to industrial fisheries, but the large MPAs we considered often did not significantly reduce fishing effort because baseline fishing was typically low. It is yet to be determined how large MPAs may shape global ocean conservation in the future if the footprint of human influence continues to expand. Continued improvement in understanding of how large MPAs interact with industrial fisheries is a crucial step toward defining their role in global ocean management.  相似文献   

20.
Regime shift in a coastal marine ecosystem   总被引:1,自引:0,他引:1  
We demonstrate changes in ecosystem stable states in a coastal lagoon that are consistent with what a regime shift would hypothesize. In the nutrient-stressed Ringk?bing Fjord, Denmark, a small change in one variable (salinity) facilitated by a change in sluice management, caused a sudden regime shift from a bottom-up controlled turbid state, into a top-down controlled clear-water state. The change in dominating pathway of organic matter production from pelagic turnover to benthic-pelagic coupling was facilitated by new recruitment and growth of existing suspension-feeding clams, Mya arenaria. With the invasion of clams, benthic grazing became the key feature of the biological structure. Phytoplankton composition and zooplankton abundance were also affected by the change in biological structure. The small, but sudden, increase in salinity caused by the change in sluice management led to a dramatic reduction in biomass and coverage of benthic vegetation and thus affected herbivorous waterbird populations. In recent years, plant coverage has been increasing, as can be expected with increased water transparency. The regime shift has some major implications for coastal water management and revealed some conflicts between different types of nature and environmental protection legislation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号