首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
城市污泥制备水中重金属吸附剂及其吸附特性研究   总被引:1,自引:0,他引:1  
本实验利用城市污水厂的脱水污泥,通过化学活化法制备活性炭.研究活化温度、活化时间、固液比和活化剂浓度等因素对制备污泥活性炭的影响,确定氯化锌法制备污泥活性炭的最佳工艺为活化温度550 ℃、活化时间30 min、固液比1∶2、氯化剂浓度45%.将制备的污泥活性炭吸附Cu2+,Cr6+,Cd2+3种重金属离子模拟废水,研究pH值、吸附时间、污泥投加量、温度等因素对吸附过程的影响.实验结果表明,剩余污泥对Cu2+,Cr6+,Cd2+3种重金属离子都具有良好的吸附效果,在优化条件下,3种重金属离子去除率分别达到94%,76%,81%,吸附能力大小顺序为Cu2+>Cd2+>+Cr6+.  相似文献   

2.
3.
周耀珍  姚春才  方年 《化工环保》2014,34(2):170-175
以壳聚糖为原料、二甲基二烯丙基氯化铵(DMDAAC)为接枝单体、甲醛为预交联剂、环氧氯丙烷为交联剂,通过反相乳液聚合制备出交联壳聚糖季铵盐吸附剂,并将其用于吸附Ni(Ⅱ)和Cr(Ⅵ)。考察了吸附时间、溶液初始浓度、溶液pH等因素对吸附效果的影响。实验结果表明:该吸附剂对Ni(Ⅱ)和Cr(Ⅵ)的吸附过程遵循拟二级动力学方程,吸附等温线符合Langmuir方程;在30 ℃条件下,Ni(Ⅱ)和Cr(Ⅵ)的溶液初始浓度均为1 mmol/L时,该吸附剂吸附Ni(Ⅱ)和Cr(Ⅵ)的最佳溶液pH分别为7和6,对应的平衡吸附量分别为1.18,1.99 mmol/g;该吸附剂可用盐酸再生,重复使用性能良好。  相似文献   

4.
球形纤维素吸附剂对Ct^3+吸附和解吸的研究   总被引:9,自引:0,他引:9  
用静态法和动态法研究了球形纤维素吸附剂对水中Cr^3 的吸附和解吸,包括静态等温吸附以及各种因素对吸附的影响等,并探讨了吸附机理。Cr^3 的吸附容量为28mg/g,采用浓度为1.2mol/L的HCl溶液作解吸液回收Cr^3 的综合效果较好。静态法和动态法和吸附率均达90%左右,解吸率均达85%以上,且静态法的吸附率和解吸率分别略高于动态法的吸附率和解吸率,但动态法耗时短,更符合工业化要求。  相似文献   

5.
重金属吸附剂壳聚糖的改性研究进展   总被引:4,自引:2,他引:2  
综述了重金属吸附剂壳聚糖改性研究的新进展,介绍了交联与接枝等改性方式对壳聚糖稳定性的影响及改性后的壳聚糖对水体中重金属离子吸附性能的改善.针对壳聚糖改性中仍然存在的一些问题,指出今后研究中值得关注的方向.  相似文献   

6.
用静态法和动态法研究了球形纤维素吸附剂对水中 Cr3+的吸附和解吸 ,包括静态等温吸附以及各种因素对吸附的影响等 ,并探讨了吸附机理。 Cr3+的吸附容量为 2 8mg/ g,采用浓度为 1.2 mol/ L 的 HCl溶液作解吸液回收 Cr3+的综合效果较好。静态法和动态法的吸附率均达 90 %左右 ,解吸率均达 85 %以上 ,且静态法的吸附率和解吸率分别略高于动态法的吸附率和解吸率 ,但动态法耗时短 ,更符合工业化要求。  相似文献   

7.
交联阳离子淀粉的合成及其对重金属离子的吸附   总被引:9,自引:4,他引:5  
通过正交实验合成了取代度为0.568的交联阳离子淀粉。考察了溶液pH、螯合剂用量、重金属离子初始浓度对交联阳离子淀粉去除重金属离子效果的影响。当重金属离子初始质量浓度为50mg/L、螯合剂投加量为0.5g/U时,Pb^2 ,Cu^2 ,Cr^3 在溶液pH为6时的去除率达到最高,分别为97.94%,99.46%,84.30%,而Cd^ 在溶液pH为7时的去除率达到最高,为99.36%。实验结果表明,交联阳离子淀粉是一种有效去除废水中重金属的处理剂。  相似文献   

8.
壳聚糖吸附重金属离子的研究进展   总被引:26,自引:0,他引:26  
郭敏杰  刘振  李梅 《化工环保》2004,24(4):262-265
综述了,我国近几年来壳聚糖处理含重金属离子废水的研究进展。壳聚糖及其改性产品的吸附性能主要体现在对各种金属离子的吸附上,为了有选择性地吸附某种或某些金属离子,人们通过修饰、交联、接枝等方法对壳聚糖进行了各种改性研究。  相似文献   

9.
重金属离子天然吸附剂的解吸与再生   总被引:9,自引:2,他引:7  
总结了重金属离子的天然吸附剂的解吸与再生的研究进展.着重论述了各类解吸剂的解吸原理、解吸特点和解吸性能.指出无机酸解吸剂是价廉高效的理想解吸剂,其中盐酸可在低浓度下达到较高的解吸率,且对吸附剂性能没有损害,而强碱溶液是以阴离子基团形式存在的Cr~(6+)的专有解吸剂.在解吸过程中采用超声波或微波有助于提高解吸率.多数天然吸附剂都具有良好的再生能力,经5次吸附-解吸循环操作仍能保持原有的吸附性能.  相似文献   

10.
交联壳聚糖/沸石复合吸附剂的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
用沸石负载由缩水甘油基三乙基氯化铵交联的壳聚糖,制得了性能良好的交联壳聚糖/沸石复合吸附剂。研究了该吸附剂应用性能的影响因素,探讨了该吸附剂的吸附性、沉降性和重复使用性,利用FTIR仪和高倍透射电子显微镜对该吸附剂的结构进行了表征。实验结果表明:壳聚糖的交联度为0.93、交联壳聚糖与沸石的质量比为0.045时,制得的交联壳聚糖/沸石复合吸附剂对腐殖酸的去除率可达81.4%,吸附量为4.07mg/g;交联壳聚糖/沸石复合吸附剂对腐殖酸的吸附性能较沸石有显著提高,沉降时间较交联壳聚糖明显缩短;经二次洗脱后腐殖酸去除率仍可达80.2%,腐殖酸吸附量为4.01mg/g。  相似文献   

11.
综述了重金属吸附剂高岭石的有机、无机改性方法研究进展,重点介绍了高岭石的无机改性方法(无机酸活化,过渡金属、金属氧化物、无机盐改性)对高岭石结构性质以及吸附性能的改善效果,并与同步改性的蒙脱石进行了比较,针对改性过程中仍然存在的一些不足,结合实际应用的要求,探讨了进一步研究中值得关注的问题.  相似文献   

12.
A numerical model BAEROSOL for solving the general dynamic equation (GDE) of aerosols is presented. The goal was to model the capture of volatilized metals by sorbents under incinerator-like conditions. The model is based on algorithms presented by Jacobson and Turco [Aerosol Science and Technology 22 (1995) 73]. A hybrid size bin was used to model growth and formation of particles from the continuum phase and the coagulation of existing particles. Condensation and evaporation growth were calculated in a moving size bin approach, where coagulation and nucleation was modeled in the fixed size bin model of the hybrid grid. To account for the thermodynamic equilibrium in the gas phase, a thermodynamic equilibrium code CET89 was implemented. The particle size distribution (PSD) calculated with the model was then compared to analytical solutions provided for growth, coagulation and both combined. Finally, experimental findings by Rodriguez and Hall [Waste Management 21 (2001) 589-607] were compared to the PSD predicted by the developed model and the applicability of the model under incineration conditions is discussed.  相似文献   

13.
Journal of Material Cycles and Waste Management - In this study, the effect of natural zeolite on the ammonium ion removal from landfill fresh leachate (LFL) was investigated. The effect of...  相似文献   

14.
Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250–300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.  相似文献   

15.
Algae have considerable capability for absorbing heavy metals from wastewaters and are considered an effective treatment technology. Heavy metal absorption from coal mine water from the Bhowra Abandoned mine (open cast mine) and the Sudamdih Shaft mine (underground mine waters), both located in Dhanbad, India, by cells of Spirogyra was studied at different dilutions (100 percent, 80 percent, 60 percent, 40 percent, and 20 percent). In the present study, the following 18 metals were selected for analysis: aluminium (Al), arsenic (As), silver (Ag), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), manganese (Mn), nickel (Ni), and vanadium (V). Accordingly, Al and K were found to be higher in concentration with respect to selected metals for both mine waters. The biosorption study revealed that higher amounts of Al, Bi, Co, Cs, Fe, Ga, Mn, Ni, and V were absorbed by algal biomass at 100 percent concentration from both mine waters. The maximum uptake of Cu, As, and Cd was measured at 60 percent, 40 percent, and 20 percent, respectively, for the Bhowra Abandoned mine water. The biosorption equilibrium study revealed that Ag, Al, Ba, Be, Bi, Co, Cr, Cs, Fe, Ga, In, K, Mn, Ni, and V were maximally absorbed by algal biomass at 100 percent concentration from Bhowra mine water, while the maximum uptake by the algal biomass measured for the Sudamidh coal mine water was for Al, As, Bi, Cu, Fe, and Mn at 100 percent concentration. The different physicochemical characteristics of mine water and drinking water standards was also studied. Accordingly, total dissolved solid and chemical oxygen demand concentrations exceeded the drinking water standards for water samples collected from both mines.  相似文献   

16.
This contribution reports a novel and cost efficient strategy for nickel ion removal from metal finishing effluents by electro-dissolution of scrap aluminium and iron sacrificial anodes. Electro-coagulation of effluent was carried out at 30 mA/cm2 current density for 60 min. The nickel ion concentration of electroplating effluent was analysed by Atomic Absorption Spectroscopy. SEM images of iron and aluminium scrap anodes were critically analysed. Parameters such as heavy metal removal, anode dissolution rate with respect to heavy metal removal, reaction kinetics and cost estimation have been elaborately studied. Electro-coagulation at 30 mA/cm2 for 60 min using iron and aluminium scrap anodes resulted in 95.9 and 94.1 % nickel ion reduction, respectively, with 0.0094 and 0.0053 g/ppm dissolution rates. The energy consumption for scrap aluminium and iron anodes was 0.0547 kWh/L. Loose internal bonding and spongy surface morphology of used metal scrap render high porosity and active surface area, enhancing reaction rate. Low cost and ready availability of waste scrap makes the process of electro-coagulation economically viable. Thus, the findings from this contribution point decisively at the superiority of waste metal scrap-based anodes for economic and environmentally sustainable heavy metal ion removal from metal finishing effluent.  相似文献   

17.
Activated carbon, developed from fertilizer waste, has been used for the removal of Hg2+, Cr6+, Pb2+, and Cu2+. Mass transfer kinetic approach has been successfully applied for the determination of various parameters necessary for designing a fixed-bed absorber. Parameters selected are the length of the (PAZ) primary adsorption zone (δ), total time involved for the establishment of primary adsorption zone (tx), mass rate of flow to the absorber (Fm), time for primary adsorption zone to move down its length (tδ), amount of adsorbate adsorbed in PAZ from breakpoint to exhaustion (Ms), fractional capacity (f), time of initial formation of PAZ (tf) and per cent saturation of column at break point. Chemical regeneration has been achieved with 1 M HNO3.  相似文献   

18.
The aim of this study was to improve the removal of heavy metals from sewage sludge ash by a thermochemical process. The resulting detoxified ash was intended for use as a raw material rich in phosphorus (P) for inorganic fertiliser production. The thermochemical treatment was performed in a rotary kiln where the evaporation of relevant heavy metals was enhanced by additives. The four variables investigated for process optimisation were treatment temperature, type of additive (KCl, MgCl(2)) and its amount, as well as type of reactor (directly or indirectly heated rotary kiln). The removal rates of Cd, Cr, Cu, Ni, Pb, Zn and of Ca, P and Cl were investigated. The best overall removal efficiency for Cd, Cu, Pb and Zn could be found for the indirectly heated system. The type of additive was critical, since MgCl(2) favours Zn- over Cu-removal, while KCl acts conversely. The use of MgCl(2) caused less particle abrasion from the pellets in the kiln than KCl. In the case of the additive KCl, liquid KCl - temporarily formed in the pellets - acted as a barrier to heavy metal evaporation as long as treatment temperatures were not sufficiently high to enhance its reaction or evaporation.  相似文献   

19.
以水性油墨废水絮凝污泥为原料、采用一步炭化活化法制备了吸附剂,并将其用于阳离子蓝X-GRRL溶液(300 mg/L)的吸附处理。考察了吸附剂投加量、吸附时间、吸附温度和吸附pH对吸附效果的影响,并对吸附动力学进行了探讨。结果表明:所制得吸附剂的总孔体积为0.5 cm~3/g,平均孔径为7.12 nm;在吸附剂投加量0.6g/L、吸附时间420 min、吸附温度25℃、吸附pH 5.4的条件下,吸附量高达486.21 mg/g,脱色率达97.24%;该吸附剂对于阳离子蓝X-GRRL的吸附过程可用准二级动力学模型和颗粒内扩散效应模型很好地描述。  相似文献   

20.
The effectiveness of inorganic alumino-silicate sorbents (alumina and kaolinite) to adsorb airborne lead and cadmium from the effluent stream of a simulated waste incinerator was studied. A 20 kW (68,000 BTU/h) flow reactor was used to achieve the temperature and residence times typical of a waste incinerator. Solutions containing lead or cadmium were introduced yielding airborne metals concentrations between 15 and 150 ppm. Gas samples were drawn into a particle impactor that collected the airborne particles and condensed phase metal aerosols, separating them into ten size ranges from 0.2 μm to greater than 10 μm. Metals to sorbent mass ratios between 0.03 and 1.56 were investigated. Scavenging efficiency increased as the ratio of sorbent to injected metal mass was increased. The scavenging efficiencies were as high as 76% for lead scavenged by kaolinite to as low as 14% for cadmium scavenged by alumina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号