共查询到15条相似文献,搜索用时 78 毫秒
1.
上海市臭氧污染的大气环流客观分型研究 总被引:4,自引:0,他引:4
利用T-mode主成分分析法(PCT)对上海2013—2017年3—10月925 hPa低层位势高度和全风速场进行大样本客观分型,总结了有利于和不利于促发上海地面臭氧污染的大气环流类型.发现有利于促发臭氧污染的环流形势都和副高有关,分别为副高控制(HC)和副高西北侧(HW),对应的臭氧超标率分别为68%和24.2%.前者的气象特点表现为辐射最强、温度最高有利于臭氧的光化学生成,臭氧浓度较弱副高形势平均偏高约50%;而后者以西向风为主,呈现明显的输送效应.相反不利于促发臭氧污染的环流类型都和低值系统相关,分别为低压北侧(LN)、低压东侧(LE)和低压西侧(LW),臭氧超标率均低于7%.其中LN影响下上海水平风速最大、扩散条件最好,不利于臭氧积聚;LE和LW影响下上海多云雨天气导致辐射降低,抑制了臭氧的光化学生成. 相似文献
3.
本研究结合地面观测资料,ERA5再分析数据和PCT客观分型法,分析了2014~2019年四川盆地区域性O3污染特征以及天气形势与O3污染的关系.结果表明,2014~2019年四川盆地O3区域污染发生频数呈单峰型分布,于2016年达到峰值,且发生区域主要集中在成都平原城市群.在6种典型天气类型中,类型1、2、6为污染型,其海平面气压呈西高东低,四川盆地受低压系统控制.类型3、4为清洁型,其中类型3呈北高南低,且在四川盆地东部存在1个低值中心;类型4呈东高西低,在青藏高原区域有一些小范围的高压中心.在污染型天气形势下,四川盆地的气象条件为温度高、云量低、地面接收到的紫外辐射强、相对湿度低,加速了O3的生成,再叠加类型1的静风条件不利于污染物扩散;类型2、6盛行的东南气流对O3及其前体物的输送,造成污染型天气类型发生区域性O3污染比例明显高于其他几种类型.此外,基于环流分型的预测结果表明环流形势对四川盆地各城市群区域O3污染影响可以达到其年变化的2倍以上,对整个四川盆地O3浓度变化的贡献率为34.8%~66.3%. 相似文献
4.
通过分析2013—2015年上海地面PM_(2.5)质量浓度观测资料,发现11、12、1月3个月对PM_(2.5)年总浓度的贡献达到36.4%,对总污染日数的贡献达到50.4%,对PM_(2.5)环境质量的影响最显著.采用T-mode斜交旋转分解方法(PCT),对2012—2015每年11月、12月和次年1月的海平面气压场和10 m风场进行大样本客观分型研究,揭示了4种秋冬季上海PM_(2.5)易污染的天气环流类型,分别为冷锋(Cw)、高压后部弱气压场(WGh)、高压前部弱气压场(WGl和WGf).对上海而言,冷锋、高后弱气压、高前弱气压分别表现为有利于上游污染输送、本地静稳累积、以及本地积累和上游输送相叠加的天气学特征.对比2个典型污染月(2013年1月和12月)和清洁月(2014年11月和2015年11月)的逐日分型结果发现,Cw环流控制下污染输送对秋冬季上海PM_(2.5)环境质量影响显著,高前弱气压的维持是导致上海3次连续重度污染的重要原因. 相似文献
5.
6.
华北地区冬半年空气污染天气客观分型研究 总被引:2,自引:6,他引:2
利用2013—2016年冬半年ERA-interim再分析资料,以及同期空气污染资料、地面常规气象观测资料和探空资料,采用PCT (Principal Component Analysis in T-mode)客观分型方法对华北地区冬半年海平面气压场进行天气分型,并探究不同月份不同天气型对应的空气污染状况及污染气象参数分布特征,进而从污染气象学的角度揭示重污染潜势天气型的气候特征.结果表明:冬半年海平面气压场共对应9种天气类型,其中,5型(均压场型)、6型(高压内部型)和8型(高压后部型)为3种重污染潜势天气型,冬半年对应的PM_(2.5)均值浓度分别为144.11、136.99和148.26μg·m~(-3),而1型(T型高压前部型)和3型(低压底部型)为两种清洁天气型,冬半年对应的PM_(2.5)均值浓度分别为97.12和80.83μg·m~(-3);重污染潜势天气型对应的边界层结构呈现出稳定能量大、混合层厚度和通风系数小的大气层结稳定的静稳天气特征,其能够反映大气污染潜势;研究还发现,即使是同一天气型,其在不同月份对污染物的扩散影响也存在差异,因此,建议在今后的污染潜势天气型研究中分月份进行.本研究可为华北地区空气污染潜势预报及大气重污染预报预警的客观化、自动化提供科学依据和技术支持. 相似文献
7.
基于ERA-Interim再分析资料、大气污染资料以及气象资料,利用T-mode主成分分析法(PCT)将成都地区2016~2018年PM2.5污染严重的1、2、11、12月份的海平面气压场和10m风场分成8种天气类型,分析不同天气类型下的空气污染状况及污染气象参数特征,进而从污染气象学的角度揭示重污染天气类型下的气象特征和潜在污染来源,结果表明:①成都地区在高压后部型、低前高后型、鞍型场、北方高压底部型中PM2.5污染会加重,属于污染型天气类型,而在西路冷锋前部型、高压边缘型、西北高压底部型、东路冷锋前部型中,PM2.5污染显著减弱,属于清洁型天气类型.②在污染型天气类型下,成都地区出现的逆温层较强,混合层高度较低均不利于PM2.5的扩散稀释,且边界层内南风分量明显增大,东北风减弱,边界层通风量(VI)较小,风场对污染物的扩散能力也较弱.③对污染天气类型下成都的PM2.5污染输送与潜在来源进行研究,认为成都南部及西南部地区在各个污染天气类型下都对其PM2.5的质量浓度有明显的影响,另外在鞍型场天气类型下,成都东部及东北部地区也是成都PM2.5污染的源区之一,而在北方高压底部型中,成都地区的PM2.5主要受到其周围地区的影响,外地的污染物输入较少. 相似文献
8.
为揭示成都市区臭氧污染气象条件特征,通过欧盟COST733天气客观分型软件对成都市区2016-2019年夏半年(5-9月)海平面气压场和500 hPa位势高度场进行大气环流形势分型,并结合同期臭氧监测数据、地面气象观测数据以及总云量实况分析产品,分析成都市区夏半年臭氧超标天气及气象要素特征.结果表明:成都市区2016-2019年夏半年共出现臭氧超标日数为159 d,超标率为26.0%,超标日主要集中于5-8月,小时超标多出现于14:00-17:00.臭氧污染日数最多的海平面气压场为弱低压型,其后依次为低压前部型、低压型、高压后部型.臭氧超标率最高的海平面气压场为低压前部型,其后依次为弱低压型、低压型、高压后部型.500 hPa位势高度场平直西风气流型臭氧超标日数最多,青藏高压型臭氧超标日数最少.青藏高压型是臭氧超标率最高的500 hPa位势高度场型,平直西风气流型臭氧超标率最低.成都市区臭氧超标日多出现在偏西北风下,近地面气象要素特征一般表现为风速1.2~1.6 m/s,气温在25℃以上,相对湿度多集中在70%左右,总云量和降水概率多低于60%,降水量级以小雨为主,太阳辐射和日照时数分别位于20.5~23.2 MJ/m2和6.0~7.8 h区间.小时臭氧超标近地面气象要素特征为气温和总辐射曝辐量相对较高,二者分别在30~36℃和0~3.5 MJ/m2之间,相对湿度在60%以下,总云量低于40%,以偏南风影响为主.研究显示,成都市区海平面气压场为低压型,500 hPa位势高度场为青藏高压型时,易发生臭氧污染. 相似文献
9.
基于2015~2019年南京细颗粒物(PM2.5)和臭氧(O3)逐小时浓度数据,通过T-mode主成分分析法对南京发生PM2.5和O3污染同时高浓度并存(双高污染)时的天气形势进行了分型,利用后向轨迹聚类分析法、潜在来源贡献法(PSCF)和浓度权重轨迹分析法(CWT)研究不同天气形势对南京双高污染的输送路径及潜在源区分布.结果表明,有利于南京地区双高污染的天气形势分别为弱的低压型(Type1)和高压中心型(Type2).天气形势会对后向轨迹的方位来源产生影响.Type1时,南京地区受到东北和西南两个低气压影响,气团的聚类轨迹主要来自东西两个方位,轨迹中ρ(PM2.5)和ρ(O3)平均值分别为83.48 μg·m-3和106.85 μg·m-3.Type2时,南京及其周边在高压中心边缘,气团聚类轨迹主要来自北方和东方,轨迹中ρ(PM2.5)和ρ(O3)平均值分别为94.47 μg·m-3和92.32 μg·m-3.同时两种类型后向轨迹绝大部分属于中短距离区域输送,说明周边临近省份的污染是影响南京地区双高污染主要原因之一.PSCF和CWT分析表明,两者高值区域基本保持一致.Type1和Type2两种类型中PM2.5和O3的最主要潜在源区均出现分布并不完全一致的情况,表明双高污染中的两种污染物并非来自同一地区. 相似文献
10.
利用广州市2015—2021年的地面观测资料和ERA5再分析数据集,统计了臭氧和PM2.5的时间分布特征及两者同时出现高值(“双高”过程)的气象成因,并进一步用自组织神经网络(SOM)研究了高浓度臭氧和PM2.5(浓度大于年第85分位数)对应的客观天气型.结果表明,2015—2021年,广州市臭氧浓度呈逐年上升趋势,而PM2.5浓度则呈逐年下降趋势,臭氧逐渐取代PM2.5成为首要污染物.“双高”日主要集中在春季和秋季,且秋季占比超过50%.当温度为20~30℃,湿度为30%~50%时,“双高”日出现的概率达到30%以上.基于天气分型方法,本研究发现在所有“双高”污染过程中,主要天气分型依次为:高压底后部型、变性高压脊型、副高+台风外围型、冷锋前部型;秋季发生“双高”污染时,天气分型依次为:副高+台风外围型和副高+弱冷高压脊型. 相似文献
11.
Yu Yan Xuesong Wang Zhengchao Huang Kun Qu Wenbin Shi Zimu Peng Limin Zeng Shaodong Xie Yuanhang Zhang 《环境科学学报(英文版)》2023,127(5):143-157
The coastal eco-city of Fuzhou in Southeastern China has experienced severe ozone (O3)episodes at times in recent years.In this study,three typical synoptic circulations types (CTs)that influenced more than 80%of O3polluted days in Fuzhou during 2014-2019 were identified using a subjective approach.The characteristics of meteorological conditions linked to photochemical formation and transport of O3under the three CTs were summarized.Comprehensive Air Quality Mod... 相似文献
12.
通过分析肇庆市2013—2018年国控大气环境监测站的PM_(2.5)连续监测数据,发现肇庆市区PM_(2.5)浓度在干季(10月—次年4月)明显高于其余月份,轻度以上污染基本发生在干季,且PM_(2.5)浓度对年总浓度贡献达70.8%.基于Era-interim再分析资料采用K-means聚类分析法对2013—2018年干季逐日的海平面气压和10 m水平风进行分型,揭示了肇庆市易出现PM_(2.5)污染的6种大气环流形势,包括冷锋前部(CF)、变性高压脊(THR)、脊后槽前型(BRFT)、高压底后部(HSW)、弱冷高压脊(HR)和台风外围型(TP).2013—2016年易污染天气型影响天数呈明显减少趋势,2017—2018年呈增加趋势.不同天气型PM_(2.5)浓度与局地气象要素相关性不一致,其中CF、HR、HSW、TP天气型与湿度相关性最好,THR与风速、BRFT与气压相关性最好.PM_(2.5)污染除BRFT天气型主要以本地排放累积影响为主,其余易污染天气型存在不同尺度的外来输送影响,HSW、HR主要来自广州、清远、韶关, CF主要来自佛山、中山,THR来自广州、清远、佛山.同一污染天气型在不同月份的污染影响差异较大,其中HSW、THR污染型主要影响1月和10月,CF为1月和12月,HR为2月和12月,TP为10月,BRFT为1月和10—11月.不同年份的同一月份造成不同程度的PM_(2.5)污染除了排放影响,还与天气环流类型和同一天气型下的局地气象要素密切相关. 相似文献
13.
广东省臭氧污染特征及其来源解析研究 总被引:12,自引:0,他引:12
使用广东省近年大范围长期连续臭氧观测数据分析了珠三角与广东省的臭氧污染特征,并使用NAQPMS模型研究了广东省与典型城市不同季节的臭氧来源情况.结果表明:2014—2016年广东省的臭氧污染局部在改善.珠三角的臭氧浓度水平总体高于粤东西北地区,广东省臭氧总体上呈现出珠三角中南部和粤东东部部分地区较高、粤西污染相对较轻的分布态势.广东省的臭氧夏秋季浓度较高,冬春季浓度较低.广东省臭氧主要来源于本地排放,夏季占比为57%,其余季节约占40%,臭氧的跨省输送特征明显.珠三角西南部春夏季臭氧本地贡献约为50%,但秋冬季仅占19%~28%.若要减轻广东的臭氧污染,建议实施臭氧消峰行动,即在夏秋季节严控珠三角地区的臭氧前体物排放,特别是珠三角中部广州、佛山与东莞等城市的排放要重点控制.同时,强化粤东西北地区与周边省份的协同减排. 相似文献
14.
15.
臭氧污染问题目前越来越引起公众的关注,由于区域贡献、生成机制和影响因素的复杂性,防治难度较大。本文在分析近年来臭氧污染特征的基础上,总结了各地臭氧污染防治经验与相关措施,进一步梳理了南京市相关防治工作的开展情况,最后提出了促进臭氧污染防治的建议。 相似文献