首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evacuation from underground coal mine in emergency as soon as possible makes the difference between life and death. Human factors have an important impact on a successful evacuation, but literature review shows that there is a lack of consideration of human error risk during coal mine emergency evacuation in China. To address the above problems, in this paper, we established a framework for human error risk analysis of coal mine emergency evacuation, consisting of scenario and task analysis, risk assessment and risk reduction. A general evacuation procedure which is applicable for different causes is detailed through the scenario and task analysis. A new method based on expert judgment, named OGI-Model, is proposed to evaluate the reliability of human safety barrier. In this new approach, human safety barrier is divided into three sub-barriers, i.e., organization safety sub-barrier (OSSB), group safety sub-barrier (GSSB), and individual safety sub-barrier (ISSB). Each sub-barrier consists of a series of concrete measures against specific evacuation actions. An example is provided in this paper to demonstrate the use of this framework and its effectiveness.  相似文献   

2.
Most of the available risk management methods are not directly applicable to academic research laboratories. One solution to systematically perform risk analyses in this environment is the Laboratory Assessment and Risk Analysis (LARA) method. This method was developed to allow untrained personnel to identify of possible risks and rank them according to their importance. The purpose of this study was to find out, if this method can be used as a holistic risk management technique in different environments, and which are the differences when comparing the results to other, well established risk analysis techniques. The risk analyses were performed at two European universities and for various procedures. The results show, that the LARA procedure is more easily performable than the other methods and gives comparably adequate results. Being applicable by non-experts, this holistic risk analysis method for research laboratories can help to reduce the accident rate in the academic environment.  相似文献   

3.
本文研究矿井综采作业面附近毒害气体的积聚过程和分布规律。由"U"型通风作业面实际情况出发,提出作业面几何模型和气体流动的动力学控制方程,运用数值分析方法跟踪以CH_4和CO为代表的毒害气体在正常通风作业面的积累和分布情况。计算结果证实,作业面煤层和采空回填区释放出的CH_4和CO因局部涡流作用在回风巷隅角积聚,气体浓度经历升高而后逐渐稳定的过程;设备附近的毒害气体积聚过程与回风巷隅角类似,但积聚速度较快。迎风面附近CH_4和CO气体浓度相对较低;受上浮效应影响,背风面的毒害气体浓度积聚过程主要发生在背风面中上部。在常规通风条件下,局部CH_4浓度已超出安全规程允许的最高值,CO浓度亦达到危害人体健康的水平。本项工作获得的认识为作业面附近毒害气体监测和控制提供指导。  相似文献   

4.
煤矿安全预评价的集对分析模型及应用   总被引:25,自引:3,他引:25  
针对安全评价系统的复杂性,以集对理论为基础,进行了同、异、反分析,确定了煤矿安全预评价指标和各评价因素的联系度,建立了集对分析评价模型.对黄陵2号矿井自然条件下的灾害预评价等级为Ⅱ级,取得了与其他评价方法一致结果.评价结果表明,集对分析方法正确,计算简单.该方法用于煤矿安全预评价不仅包含了模糊综合法的特性,而且具有信息利用率高,评价结果可靠的优点.  相似文献   

5.
为解决半结构化或非结构化文本型煤矿隐患数据利用难度大、挖掘深度不够的问题,首先运用六何分析方法对煤矿事故隐患大数据进行内容分析,确定隐患的描述维度及属性类别,实现文本型隐患数据的量化表达;之后根据隐患数据变量特征,采用对数线性模型进行隐患维度间交互的知识发现研究,探索煤矿事故隐患各维度间的交互效应。研究结果表明:基于“六何分析法+对数线性模型”的分析框架能够实现文本型隐患数据的结构化转换,有效揭示煤矿隐患各维度间的交互影响关系,实现隐性知识的显性化。  相似文献   

6.
为检验矿工风险感知水平,提升其对风险的认知和应对能力,基于文献分析和访谈研究提取矿工风险感知初始测量指标,并编制测量量表,通过对162份调查数据的项目分析、探索性因子分析,净化测量指标体系,并明确矿工风险感知的测量结构;然后采用AMOS21.0软件对226份调查数据进行验证性因子分析;最后采用描述性统计和差异性分析等方法对该量表进行具体应用。研究结果表明:所构建的矿工风险感知测量体系包含风险知识和态度、风险后果认知2个维度、10个测量指标;所编制的矿工风险感知测量量表具有较好的信度、内容效度、聚合效度和区分效度;本量表在不同年龄、学历、婚姻状况、工种和工作年限的矿工群体间具有普遍适用性。量表可为煤矿员工的风险感知水平测量提供可行工具。  相似文献   

7.
通过对安太堡露天煤矿职业健康安全管理体系认证前后安全生产管理基础数据的调查和统计,采用定性和定量的分析方法对该企业的安全管理水平进行了绩效对比分析和模型分析。结果表明,对于露天煤矿企业,建立职业健康安全管理体系有利于提高企业安全管理的水平;同时证明,该绩效分析方法具有分析过程简单、分析结果科学实用等优点。  相似文献   

8.
煤矿井下主要设备噪声源测定分析研究   总被引:1,自引:1,他引:1  
煤矿地面噪声防治已经受到人们的重视,但煤矿井下噪声仍被人们所忽视,对它研究的不多。通过对开滦集团东欢坨煤矿和荆各庄煤矿进行井下噪声测量,制作噪声频谱图和噪声传播衰减趋势图,分析井下噪声的频谱特性和衰减变化,为煤矿井下降噪提供依据。结果表明所测得的煤矿井下各点噪声强度均大于90dB(A),且以中高频率为主,所以应当采取相应的针对性措施为煤矿井下进行降噪处理。  相似文献   

9.
为了更深入地研究我国煤矿事故的一般性规律,基于2014年我国煤矿事故数据,采用数理统计的方法对煤矿百万t死亡率、事故区域、类型、月份、时间段、诱因6个维度进行了研究.结果表明:湖南省、重庆市煤矿事故发生频率较高,贵州省瓦斯事故发生频率较高;瓦斯事故、顶板事故是导致人员伤亡的主要事故类型,瓦斯爆炸是煤矿瓦斯事故的主要类型;8月煤矿事故情况较为严重;10:00-11:59是煤矿事故频发时间;违章作业是导致煤矿事故发生的主要诱因.同时,针对煤矿事故发生规律提出了相应的对策措施.  相似文献   

10.
某地下矿山安全生产事故规律分析与对策研究   总被引:1,自引:0,他引:1  
基于某地下矿山2000-2009年度所发生的安全生产事故的详细统计数据,分别针对伤害程度、伤害部位、事故工龄、事故班次、事故致因和类别等进行了全面统计、归纳和分析,并采用事故树等分析法对冒顶片帮和人为原因引发的两类重要矿山事故进行了深入系统研究,确定了矿山典型事故发生的基本原因、主导控制因素、一般出现规律以及可能伤害后果。结合工程实际情况,提出了能有效降低生产事故频率,提高安全生产效率的四种具体对策与措施:(1)加强安全教育与技能培训,提高员工安全法制意识和应对突发事故的专业能力;(2)遵守人机工效学的一般原理,改善工作舒适度,提高员工工作积极性和效率;(3)坚持科学发展观,采用合理的先进生产工艺和现代化管理措施;(4)加强劳动保护用品的科学使用与人性化管理。研究成果具有重要的推广应用价值。  相似文献   

11.
The mining industry worldwide is currently experiencing an economic boom that is contributing to economic recovery and social progress in many countries. For this to continue, the mining industry must meet several challenges associated with the start-up of new projects. In a highly complex and uncertain environment, rigorous management of risks remains indispensable in order to repel threats to the success of mining.In this article, a new practical approach to risk management in mining projects is presented. This approach is based on a novel concept called “hazard concentration” and on the multi-criteria analysis method known as the Analytic Hierarchy Process (AHP). The aim of the study is to extend the use of this approach to goldmines throughout Quebec. The work is part of a larger research project of which the aim is to propose a method suitable for managing practically all risks inherent in mining projects.This study shows the importance of taking occupational health and safety (OHS) into account in all operational activities of the mine. All project risks identified by the team can be evaluated. An adaptable database cataloguing about 250 potential hazards in an underground goldmine was constructed. In spite of limitations, the results obtained in this study are potentially applicable throughout the Quebec mining sector.  相似文献   

12.
The work presented in this paper used a quantitative analysis of relevant risks through the development of fault tree analysis and risk analysis methods to aid real time risk prediction and safety evaluation of leak in a storage tank. Criticality of risk elements and their attributes can be used with real time data to predict potential failures likely to occur. As an example, a risk matrix was used to rank risk of events that could lead to a leak in a storage tank and to make decisions on risks to be allowed based on past statistical data. An intelligent system that recognizes increasing level(s) and draws awareness to the possibility of additional increase before unsafe levels are attained was used to analyse and make critical decisions. After a visual depiction of relationships between hazards and controls had been actualized, dynamic risk modelling was used to quantify the effect controls can potentially have on hazards by applying historical and real-time data into a probabilistic model. The output of a dynamic risk model is near real-time quantitative predictions of risk likelihood. Results from the risk matrix analysis method mixed with RTD and FTA were analyzed, evaluated, and compared.  相似文献   

13.
因果分析与系统安全性风险评价方法   总被引:1,自引:0,他引:1  
综合了故障树分析和事件树分析的方法,提出因果分析的框架,研究了基于因果分析建立事故脚本的方法。在此基础上,还对因果分析的概率风险评价方法进行研究,并利用该评价方法,对电机过热的安全性问题进行分析,给出了分析计算的结果  相似文献   

14.
Faults due to human errors cost the petrochemical industry billions of dollars every year and can have adverse environmental consequences. Unquantified human error probabilities exist during process state transitions performed each day by process operators using standard operating procedures. Managing the risks associated with operating procedures is an essential part of managing the overall safety risk. Additional operator training and safety education cannot eliminate all such faults due to human errors; therefore, we propose an operating procedure event tree (OPET) like analysis with branches and events specifically designed to perform risk analysis on operating procedures. The OPET method adapts event trees to analyze the risk due to human error while performing operating procedures. We consider human error scenarios during the procedure and determine the likely consequences by applying dynamic simulation. The modified event tree provides an estimate of the error frequencies.Operating procedure steps were developed, and potential operator faults were determined for two typical equipment switching procedures found in chemical plant operations. Then, dynamic simulation using Aspen HYSYS software was applied to determine the overpressure related consequences of each fault. Finally, the error frequencies resulting from those scenarios were analyzed using operating procedure event trees. We found that a typical ethylene plant gas header would overpressure with 0.6% frequency per manual dryer switch. Since dryer switches occur from every few days up to once per shift, these results suggest that dryer switching should be automated to ensure safe and environmentally friendly operation. Process dryer switching performed manually by operators opening and closing gate valves can be automated with control valves and a distributed control system. A sample distillation column was found to overpressure with 0.85% frequency per manual reflux pump switch.  相似文献   

15.
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel, its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A potentially critical scenario for the liquid hydrogen (LH2) tanks is the catastrophic rupture causing a consequent boiling liquid expanding vapour explosion (BLEVE), with consequent overpressure, fragments projection and eventually a fireball. In this work, all the BLEVE consequence typologies are evaluated through theoretical and analytical models. These models are validated with the experimental results provided by the BMW care manufacturer safety tests conducted during the 1990's. After the validation, the most suitable methods are selected to perform a blind prediction study of the forthcoming LH2 BLEVE experiments of the Safe Hydrogen fuel handling and Use for Efficient Implementation (SH2IFT) project. The models drawbacks together with the uncertainties and the knowledge gap in LH2 physical explosions are highlighted. Finally, future works on the modelling activity of the LH2 BLEVE are suggested.  相似文献   

16.
Reducing accident occurrence in petrochemical plants is crucial, thus appropriately allocating management resources to safety investment is a vital issue for corporate management as international competition intensifies. Understanding the priority of safety investment in a rational way helps achieve this objective.In this study, we targeted an acrylonitrile plant. First, Dow Chemical's Fire and Explosion Index (F&EI) identified the reaction process as having the greatest physical risk. We evaluated the severity of accidents in the reaction process using the Process Safety Metrics advocated by the Center for Chemical Process Safety (CCPS); however, this index does not express damages a company actually experience. To solve this problem, we proposed a new metric that adds indirect cost to CCPS metrics. We adopted fault tree analysis (FTA) as a risk assessment method. In identifying top events and basic events, we attempted to improve the completeness of risk identification by considering accidents from the past, actual plant operation and equipment characteristics, natural disasters, and cyber-attacks and terrorist attacks. Consequently, we identified the top events with high priority in handling because of serious accidents as fire/explosion outside the reactor, fire/explosion inside the reactor, and reactor destruction. The new CCPS evaluation index proposed in this study found that fire and explosion outside the reactor has the highest severity. We considered the creation of the fault tree (FT) diagram of the top event, estimating the occurrence probability, and identifying the risk reduction part and capital investment aimed at risk reduction. As an economically feasible selection method for risk reduction investment, using the difference in loss amounts before and after safety investments indicated investment priority.  相似文献   

17.
为有效减少煤矿开采时粉尘的生成量,降低综采区粉尘含量。基于自由基聚合和季铵化反应制备1种润湿型压裂液。通过单因素实验,确定最优配比是200 mL水,5 g油酸,0.3 g过硫酸钾,3 g N,N′-亚甲基双丙烯酰胺,2 mL环氧氯丙烷,2 g氯化钾和2 g水杨酸钠。对压裂液的反应过程、微观结构、剪切黏度、剪切稳定性、滤失性、润湿型性和清洁性进行研究。研究结果表明:该压裂液具有较高的剪切黏度和较佳的剪切稳定性,有利于注入煤层;具有较低的滤失性,便于压裂造缝;具有良好的润湿能力,能够有效地渗透到煤层中去;具有残渣含量少等特点,清洁性良好。  相似文献   

18.
IntroductionWith the development of industries and increased diversity of their associated hazards, the importance of identifying these hazards and controlling the Occupational Health and Safety (OHS) risks has also dramatically augmented. Currently, there is a serious need for a risk management system to identify and prioritize risks with the aim of providing corrective/preventive measures to minimize the negative consequences of OHS risks. In fact, this system can help the protection of employees’ health and reduction of organizational costs. Method: The present study proposes a hybrid decision-making approach based on the Failure Mode and Effect Analysis (FMEA), Fuzzy Cognitive Map (FCM), and Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) for assessing and prioritizing OHS risks. After identifying the risks and determining the values of the risk assessment criteria via the FMEA technique, the attempt is made to determine the weights of criteria based on their causal relationships through FCM and the hybrid learning algorithm. Then, the risk prioritization is carried out using the MOORA method based on the decision matrix (the output of the FMEA) and the weights of the criteria (the output of the FCM). Results: The results from the implementation of the proposed approach in a manufacturing company reveal that the score at issue can overcome some of the drawbacks of the traditional Risk Priority Number (RPN) in the conventional FMEA, including lack of assignment the different relative importance to the assessment criteria, inability to take into account other important management criteria, lack of consideration of causal relationships among criteria, and high dependence of the prioritization on the experts’ opinions, which finally provides a full and distinct risk prioritization.  相似文献   

19.
危险源辨识是煤矿风险预控管理过程中关键的一步。为提高煤矿危险源辨识的准 确性和效率,确保煤矿生产过程中发现的危险源能够及时处理,提出了基于三维可视化 危险源和危险源反馈闭环处理的解决思路,应用Java 技术,MySQL 数据库和Android Studio开发工具,构建了基于C/S架构的三维可视化危险源风险预控智能手机管理系统 。通过煤矿风险预控管理系统的实施,能够使煤矿危险源管理工作系统化、规范化,减 少或避免煤矿事故的发生。这种煤矿安全管理信息系统为提高风险预控管理工作的效率 提供了新的思路和方法,促使煤矿安全生产工作向科学化、数字化的方向发展。  相似文献   

20.
In this research, a framework combining lean manufacturing principles and fuzzy bow-tie analyses is used to assess process risks in chemical industry. Lean manufacturing tools and techniques are widely used for eliminating wastes in manufacturing environments. The five principles of lean (identify value, map the value stream, create flow, establish pull, and seek perfection) are utilized in the risk assessment process. Lean tools such as Fishbone Diagram, and Failure Mode and Effect Analysis (FMEA) are used for risk analysis and mitigation. Lean principles and tools are combined with bow-tie analysis for effective risk assessment process. The uncertainty inherent with the risks is handled using fuzzy logic principles. A case study from a chemical process industry is provided. Main risks and risk factors are identified and analyzed by the risk management team. Fuzzy estimates are obtained for the risk factors and bow-tie analysis is used to calculate the aggregated risk probability and impact. The risks are prioritized using risk priority matrix and mitigation strategies are selected based on FMEA. Results showed that the proposed framework can effectively improve the risk management process in the chemical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号