首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
基于自上而下能源清单法,主要考虑工业、交通、建筑和人体新陈代谢这4个热源对人为热的贡献,估算了2010年浙江省68个县市的人为热排放总量.使用DMSP/OLS遥感夜间灯光数据以及阈值法提取出人为热排放的主要区域,并有效减少夜灯像元溢出效应的影响.利用夜间灯光数据和增强型植被指数(EVI)构建人居指数,基于各市县人为热排放总量与其行政区范围内人居指数累计值之间很强的相关关系建立人为热排放量空间化模型,获得了250m分辨率下浙江省2010年城市人为热通量的空间分布.结果显示浙江省各县市的平均人为热排放通量为5.5W/m2,城市高值区一般介于10~40W/m2.栅格化的人为热数据可以为城市气候环境的数值模拟研究提供基础数据支持.  相似文献   

2.
长江三角洲城市群人为热排放特征研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于常规可获取的能源、交通、人口等统计资料,利用“自上而下”的能源清单法,研究了2010年长江三角洲(以下简称“长三角”)城市群地区各类人为热排放量及其时空分布特征.结果表明:该地区人为热排放总量为1.4′1019J/a,其中工业、交通、建筑、新陈代谢分别占75.1%、12.5%、9.9%和2.5%.上海、苏州、无锡、杭州和南京五个城市的人为热排放总量约占研究区域总量的71%.长三角城市群的人为热年平均排放通量为5.3W/m2,大部分地区介于5~30W/m2,城市高值区一般介于20~70W/m2,上海明显高于其他城市.为方便有关环境气候模式的输入,本文提供了人为热排放的网格化空间分布和简单的时间变化廓线.  相似文献   

3.
基于常规可获取的能源、交通、人口等统计资料,利用“自上而下”的能源清单法,研究了2010年长江三角洲(以下简称“长三角”)城市群地区各类人为热排放量及其时空分布特征.结果表明:该地区人为热排放总量为1.4′1019J/a,其中工业、交通、建筑、新陈代谢分别占75.1%、12.5%、9.9%和2.5%.上海、苏州、无锡、杭州和南京五个城市的人为热排放总量约占研究区域总量的71%.长三角城市群的人为热年平均排放通量为5.3W/m2,大部分地区介于5~30W/m2,城市高值区一般介于20~70W/m2,上海明显高于其他城市.为方便有关环境气候模式的输入,本文提供了人为热排放的网格化空间分布和简单的时间变化廓线.  相似文献   

4.
利用源清单法对北京主城区的人为热进行研究,得出不同热源排放总量与时空特征并进行小区验证.结果表明:主城区的人为热年排放总量为1.11×1018J/a,为太阳辐射总量的8.1%,其中建筑排热占人为热排放的45.3%,交通和工业部分分别占30.1%、20.2%;人为排热总量最大的为朝阳和海淀区,占主城区总量的52.2%,最少的东城和大兴区均占7.7%;主城区平均排放强度为14.55W/m2,最大为西城区82.30W/m2,大兴区仅为2.61W/m2;人为热排放高值区多集中于北二环与北四环内,约为60~100W/m2,少数街道和地区排热在150W/m2以上,最高排热强度272~376W/m2为北京CBD区,人为热结果与遥感反演的地表温度有一定的正相关关系;交通排热的月变化不显著,日变化系数在09:00、18:00左右较高,建筑排热在不同季节不同时刻均有明显差别,出现“双峰”现象,同人们作息规律相一致.  相似文献   

5.
中国地区人为热分布特征研究   总被引:2,自引:0,他引:2  
利用中国统计年鉴中全国各省份的非再生能源消费资料和2.5min×2.5min分辨率的人口格点数据,对中国地区人为热排放的时空分布进行研究,讨论了其分布特征和影响因素.结果表明,中国地区人为热通量随时间持续增长,特别是在2000年后增长加速,1985年到2000年从0.09W/m2增长到0.16W/m2,而到2013年已经增长到0.38W/m2.中国地区的人为热排放具有显著的地域特征,在华北、华东和华南,由于人口密度大、经济发达,人为热的污染很严重;在华中地区,人为热污染较严重的区域主要分布在以武汉为中心的经济圈;在东北地区,以大连、沈阳、长春和哈尔滨为中心的城市区域人为热污染也较为严重;而在西北和西南的大部分地区,人为热排放量很小,仅在以成都、重庆为中心的区域较大.历年来全国年均人为热的最大值都出现在上海,其中2010年最大,为113.5W/m2,上海人为热排放的年均值增长明显,可达到0.6W/m2/a.随着城市化进程的加快,人为热的排放愈来愈强,热污染对城市和区域的气候以及空气污染的影响也会越来越重要.  相似文献   

6.
利用人口统计、分布数据及能源消费统计资料,对中国1980~2015年人为热通量(Qa)的时空变化进行了研究,并将其与地表净太阳辐射(Rn)进行了对比分析,以探讨人为热对不同尺度地表能量平衡的影响.结果表明,在研究时段内,全国平均Qa呈显著升高趋势(0.11W/m2/10a,P<0.001),从1980年的0.07W/m2上升到2015年的0.45W/m2,已经约相当于全球工业革命以来CO2排放引起辐射强迫(1.68W/m2)的27%;其中Qa高值区(≥ 1.00W/m2)已由1990年的点状分布变为2015年的面状分布,占到全国面积的10%;全国平均Rn的趋势率(0.18W/m2/10a)略大于Qa,但未通过显著性检验(P=0.381).对于参与计算的31个省会城市,2015年市区Qa平均值在1~32W/m2之间,平均达17W/m2,相当于Rn平均值(147W/m2)的12%;在栅格尺度上(0.5min×0.5min),除拉萨外,其余城市的Qa像元最大值均超过了120W/m2,已经导致局地的热平衡发生了本质变化.研究认为,人为热释放因素不但需要在城市气候模拟研究中给予更多考虑,而且在全球和区域气候模拟与评价中以及制定气候变化应对策略时也有必要给予充分考虑,以促进全面认识并减缓气温升高.  相似文献   

7.
人类生产生活中产生的大量废热对城市环境中的温度、城市边界层结构、空气质量及人类健康都有着重要的影响.然而目前人为热排放清单的计算方法存在所需基础资料种类繁多、计算过程复杂,空间分布和排放量有较大偏差等不足.本研究采用统计回归法基于CO和NOx污染源清单计算了2007—2015年珠江三角洲地区的人为热排放清单,对其排放趋势、热排放来源类型变化以及空间格局的演变进行了梳理.结果表明:2007—2015年珠三角地区年平均人为热均大于9 W·m-2,人为热排放峰值出现在2010年,趋势为先增加后减少,这与燃料消耗总量的变化趋势基本一致,而工业源和道路移动源是影响人为热排放总量变化的最大因素:2007—2015年珠三角地区大部分区域人为热排放处于0~20 W·m-2,高值区(>20 W·m-2)主要分布于珠三角地区中心地带的城市群,高值区缩减的面积和速度在2010—2012年期间达到最大.进一步对2012年人为热清单的不确定性分析表明:总人为热的95%置信区间的不确定性为-16%~49%,其中电厂类别排放估算中的不确定性最小,为-13%~16%,而工业源的不确定性最高,为-46%~73%.  相似文献   

8.
船舶排放是我国沿海地区重要的人为排放源,但现有的船舶排放评估研究大多只关注区域尺度的影响分析,而且忽视了排放清单的不确定性,这在一定程度上削弱了评估结果的可靠性.为此,本文利用WRF-SMOKE-CAMQ空气质量模型,定量评估了船舶排放及其不确定性对我国七大沿海港口城市夏季空气质量的影响,结果表明:船舶排放对我国主要沿海港口城市的SO2、NOx和PM2.5浓度贡献范围分别为16.5%~62.5%、21.9%~72.9%和5.9%~26.0%,尤其对宁波、青岛和深圳等港口城市空气质量的影响显著,主要是由于港口较高的船舶排放以及气象传输两方面原因造成的;如果考虑船舶排放清单的总量不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.0~3.1,2.1~5.5,0.3~0.9μg/m3的波动;考虑船舶排放清单的时空分配不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.9~15.7,5.1~29.3,0.6~2.5μg/m3的波动.可见,船舶排放清单的不确定性对沿海城市船舶排放贡献影响量化有明显的影响.所以在评估船舶排放对港口城市空气质量的影响时,要考虑船舶排放清单的不确定性,尤其是时空分配的不确定性.而合理的时空分配能够提高船舶排放清单的质量和对沿海空气质量模拟的准确性.  相似文献   

9.
张亮林  潘竟虎 《中国环境科学》2021,41(11):5391-5404
基于PM2.5遥感数据和人口格网数据,利用污染物人口暴露风险模型、Theil-Sen Media和Mann-Kendall等方法,分析了2000~2016年全球PM2.5人口暴露风险时空分布特征,并识别出暴露高风险区域.结果表明,PM2.5遥感数据和人口格网数据可以客观地评价暴露风险程度.全球PM2.5平均浓度在各大洲差异显著,PM2.5污染的高值区域主要分布在东亚、南亚和东南亚.PM2.5质量浓度的多年平均值从高到低分别是亚洲14.7μg/m3、非洲8.1μg/m3、欧洲8.03μg/m3、南美洲5.69μg/m3、北美洲4.41μg/m3和大洋洲1.27μg/m3.2000~2016年,全球PM2.5人口暴露风险在宏观尺度上呈逐渐减少的趋势,而在区域内则呈现出差异性.空间上,全球PM2.5人口暴露风险各大洲从高到低依次为亚洲5.94、非洲0.62、欧洲0.45、南美洲0.32、北美洲0.27和大洋洲0.01.时间上,2000~2016年,亚洲和非洲PM2.5人口暴露风险呈增长趋势,欧洲和北美洲呈减少趋势,大洋洲和南美洲变化幅度较小.  相似文献   

10.
一种快速定量估计大气污染物来源的方法   总被引:3,自引:0,他引:3  
定量估计目标区域大气污染物源区的时空分布对有效应对空气污染具有重要的支撑作用.本文利用FLEXPART拉格朗日粒子扩散模式、WRF模式和清华大学MEIC人为排放源清单,建立了一种基于气象条件和人为源排放清单的快速定量估计大气污染物源区时空分布的方法,并以上海地区2015年12月22—23日一次污染过程为例,确定了目标区域和目标时段的污染物来源分布.与WRF-Chem模式人为排放源"清零试验"结果的对比分析结果表明,本定量估计的结果尽管在数值存在一定偏差,但在时间和空间分布上具有良好的一致性.研究表明,本文提供了一种快速并较为准确的定量估计目标区域大气污染物源区时空分布的方法.  相似文献   

11.
利用WRF-CMAQ模型估算了2011年4月26日~5月3日沙尘事件和2016年1月1日~7日灰霾事件在中国近海引起的总无机氮(TIN)沉降通量,分析了两类事件对中国近海海洋初级生产力的贡献,探究了灰霾事件时中国近海无机氮沉降的可能来源.结果表明:典型沙尘和灰霾过程中,中国近海TIN干沉降通量均值分别为6.77,3.01mg N/(m2·d),是晴朗天的6.84,3.04倍,可提供38.5,17.1mg C/(m2·d)的海洋初级生产力;沙尘期间无机氮沉降以还原态氮(NH3和铵态氮,占TIN的62.2%)为主,灰霾期间则以氧化态氮(HNO3和硝态氮,占TIN的84.3%)为主.典型沙尘事件TIN沉降对黄海影响最大,对渤海影响最小;典型灰霾事件对黄海和东海TIN沉降影响相当,高于对渤海的贡献.典型灰霾期间,京津冀和山东西北部(区域一)对渤、黄、东海TIN干沉降的贡献均大于长江三角洲及周边地区(区域二),区域一对3个海域TIN干沉降的贡献约为38.7%~74.6%,区域二的贡献约为1.14%~12.1%.  相似文献   

12.
PCDD/Fs排放清单是进行PCDD/Fs控制、环境归趋行为研究和健康风险评估的基础.本研究基于我国官方发布的2004年各行业PCDD/Fs排放清单的基础上,结合联合国环境规划署(UNEP) 2013年发布的最新《鉴别及量化PCDD/Fs类排放标准工具包》中PCDD/Fs排放因子,估算了我国2016年各省各行业PCDD/Fs大气排放量,并结合各行业网格化指代数据,建立了我国PCDD/Fs大气网格化排放清单(1/4°×1/4°经纬度),最后利用蒙特卡洛模型分析了清单的不确定性.结果表明,2016年我国PCDD/Fs大气排放量(以TEQ计,下同)为10 366 g,与2004年相比增加了约2倍.从排放行业来看,金属生产是我国大气中PCDD/Fs的主要来源,2016年排放量为5 333 g,其次为垃圾焚烧(2 469 g),供热和发电(1 290 g)和矿物产品生产(933 g),以上4个行业排放量占我国PCDD/Fs大气总排放的97%.从空间来看,我国大气PCDD/Fs排放主要集中在京津冀、长三角和珠三角地区,其中京津冀和长三角地区PCDD/Fs排放主要来自钢铁生产,珠三角地区主要来自垃圾...  相似文献   

13.
广东省产业绿色发展的空间格局及影响因素分析   总被引:1,自引:0,他引:1  
产业绿色发展对构建高效低耗、绿色循环发展的产业体系、实现经济可持续发展具有重要意义。从产业绿色增长度、资源环境承载力和政府政策支撑力三个维度构建广东省产业绿色发展综合评价指标体系,采用熵值法,测度了2005-2015年广东省及各市产业绿色发展综合水平,并运用探索性空间数据分析方法剖析了广东省各市产业绿色发展的空间关联特征,在此基础上采用空间误差模型对广东省产业绿色发展水平的影响因素进行探讨。结果表明:(1)从总体水平看,广东省产业绿色发展综合水平基本呈现持续增长态势;(2)从空间分布看,其总体水平的空间格局呈现“核心—边缘”状,高水平主要集聚在珠三角,而中低水平主要分布在珠三角外围地区;(3)从空间演化看,2005-2015年广东省各市的产业绿色发展水平空间差异略有扩大,但总体格局保持相对稳定;(4)从空间关联特征看,广东省各市产业绿色发展水平的空间分布集聚格局基本稳定,珠三角城市处于高值集聚的热点地区,外围地区的东翼和北部山区部分城市处于低值集聚的冷点地区;(5)空间误差模型结果显示全球化、市场化、居民收入水平、政府调控和科技水平均对广东省产业绿色发展水平产生显著的正向影响,而城镇化对产业绿色发展的影响不显著。  相似文献   

14.
本文基于中国境内的湖泊、水库、河流等淡水系统CH4排放研究的相关成果,对203个湖泊(595个样点)、46个水库(221个样点)、112条河流(441个样点),总计1257个样点的CH4通量数据进行统计分析,探讨了中国淡水系统(湖泊、水库、河流)CH4排放的一般特征,总结了当前研究进展,并进一步估算和评估了中国淡水系统CH4排放总量水平.结果表明:1)中国湖泊CH4排放通量平均为(1.17±1.87) mg/(m2·h),蒙新湖区((3.84±0.57) mg/(m2·h))和东北湖区((2.62±3.54) mg/(m2·h))较高,青藏湖区((1.94±4.13) mg/(m2·h))次之,东部湖区((0.81±0.90) mg/(m2·h))较低,云贵湖区((0.19±0.26) mg/(m2·h))最低;湖泊CH4排放通量呈显著的纬度模式,高纬度地区湖泊CH4排放高于低纬度地区;2)水库CH4排放通量((1.25±1.78) mg/(m2·h))与湖泊相似,水库消落带较高的排放通量((4.34±4.45)mg/(m2·h))对水库CH4排放具有重要贡献;3)河流CH4排放((0.82±1.14) mg/(m2·h))略低于湖库,长江水系CH4排放通量((0.98±2.38) mg/(m2·h))和黄河水系((0.85±0.75) mg/(m2·h))相近,高于海河水系((0.54±0.93) mg/(m2·h)),辽河、珠江水系研究较少,数据变异性极大;4)受降水、温度、径流稀释等影响,淡水系统CH4排放呈显著的季节变化,其中湖库排放夏季高于秋季,冬春季较低,而河流则春秋季高于夏冬季;5)基于外推法估算全国湖泊、水库、河流CH4排放总量分别约为0.96,0.29,0.76Tg/a,相当于全国湿地系统排放的75%.由于较大的时空变异性以及监测数据分布的不均匀性,目前估算存在较大的不确定性,但淡水系统CH4排放在全球气候变化中的贡献仍不容小觑.  相似文献   

15.
为揭示中国O3浓度的时空格局及聚集变化规律,通过对2016~2018年全国338个城市1144个监测站点的O3浓度观测数据,使用空间插值及空间自相关等方法进行分析研究.结果表明:2016~2018年全国O3浓度(第90百分位数)总体呈现上升趋势(由2016年的141.54μg/m3上升到2018年的153.21μg/m3),污染态势逐年加重,且华北及长江中下游等人口稠密地区O3浓度最高,O3浓度的空间分布呈现显著的聚集性和相似性规律,且聚集性逐年增强,O3浓度的年聚集区主要呈现北高南低的分异,高高值聚集区主要集中在北方(城市占比22.19%~29.59%),低低值聚集区则主要集中在南方(城市占比15.98%~22.19%),此外,O3浓度高高值聚集区与低低值聚集区空间分布的季节变化规律以顺时针周期性变化为主:3a来,春季集聚区分布与年集聚情况相同,夏季高高值,低低值聚集区逐渐向西扩大聚集范围,秋季则顺时针转变为东高西低的分异情况,随后高高值(低低值)聚集区沿顺时针方向南(北)移动,到冬季则转变为南高北低的空间分异情况.  相似文献   

16.
收集并处理了遥感反演的气溶胶光学厚度(AOD)、归一化植被指数(NDVI)和气象数据,采用贝叶斯最大熵(BME)结合线性混合模型(LME)估算了2015年10月~2016年3月珠江三角洲地区近地表旬平均PM2.5质量浓度.结果表明,LME+BME模型的预测精度比LME模型有较大提升,LME+BME模型的交叉验证结果R2为0.751,RMSE为6.886μg/m3,MAE为4.52μg/m3,而LME模型的交叉验证结果R2为0.703,RMSE为7.546μg/m3,MAE为4.927μg/m3.空间分布看,PM2.5高浓度地区主要集中在广州、佛山、东莞等地区,低浓度地区主要集中在肇庆、惠州、江门的南部等地区;时间变化看,PM2.5污染比较严重的时间为2015年10月中旬、2015年11月下旬以及2016年3月下旬,而2015年10月上旬、2015年12月上旬和2016年1月下旬污染则相对较低.  相似文献   

17.
协调视角下长三角城市群的空间结构演变与优化   总被引:2,自引:0,他引:2  
范擎宇  杨山 《自然资源学报》2019,34(8):1581-1592
以城市群为主体优化城镇化空间布局是构建国土空间规划体系的重要内容,空间优化的本质旨在促进城市群内部大中小城市协调发展。以长三角城市群为案例,在测度2001-2016年长三角城市群26个城市的城镇化协调水平基础上,运用社会网络和多维尺度分析等方法,分析和识别城镇化协调关系及其空间结构和内在演变机理。结果表明:(1)随着长三角城市群的城镇化协调水平提高,城市群内部的高协调城市逐渐显现出以上海为核心的“Z型”分布态势,低协调城市则稳定分布在长三角城市群扩容后的范围;(2)根据城镇化协调水平的关联强度划分长三角城市群的凝聚子群,凝聚子群的加权平均中心度和联系密度增大后,上海极化效应更加明显;(3)从城镇化协调关系的空间和时间两个维度识别城市群空间结构,长三角城市群从在空间距离影响下以省会城市为中心的“圈层”结构,变形为在时间距离影响下的“核心—边缘”结构;(4)人口、土地和经济城镇化三者协调水平的变化影响着长三角城市群空间结构演变,相较人口与经济城镇化,土地城镇化对城镇化协调关系的加强具有显著促进作用。从协调视角剖析长三角城市群的空间结构并提出优化政策,有助于中国现有资源环境承载能力条件下城市群一体化建设和空间资源的高效利用。  相似文献   

18.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中.  相似文献   

19.
应用华东区域大气环境数值预报业务系统对长江三角洲55个城市2019年逐日臭氧(O3)进行了数值预报,结果表明不同时效的预报效果非常稳定,预报与观测在相关系数、倍比等指标上体现出良好的一致性,绝大多数城市的相关系数高于0.7,但数值上存在系统性偏高.时间变化上的高度一致性决定了学习期为5~7d、截距为0的单因子动态适应学...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号