首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
分子扩散系数(D)是获得污染物与环境介质之间的平衡分配系数(K)的重要前提,然而通过实验测定获取污染物的扩散系数的过程过于繁琐,因此需开发一种更为简单、高效、准确的预测模型来定量预测扩散系数.为此,本文搜集了一些多环芳香烃(PAHs)和多氯联苯(PCBs)在低密度聚乙烯膜(LDPE)上扩散系数(log D)的实测值,基于定量结构-活性关系(QSAR),利用逐步多元线性回归(MLR)构建了预测D值的模型.模型的决定系数Radj2为0.941,交叉验证系数QLOO2为0.934,外部系数Qext2为0.895.结果表明,该QSAR模型具有良好的拟合优度、稳健性和预测能力,其可用来预测应用域内有机污染物在LDPE膜上的扩散系数.  相似文献   

2.
选取全国13个具有代表性的不同气候带和植被类型的森林土壤,通过外源添加重金属镉(Cd),比较分析土壤Cd的固-液分配系数(Kd)和有效态Cd的分布特征,探讨了土壤/土壤溶液性质对Kd及土壤有效态Cd的影响,并建立了土壤Kd及有效态Cd的拟合模型.结果表明,在不同浓度Cd处理的土壤中,其Kd值的变化范围为0.91~623.66L/kg,平均值为53.11L/kg,最大值和最小值的差异达到684.37倍;土壤孔隙水中Cd浓度(PW-Cd)的变化范围为0.309~104.450mg/L,其最大值与最小值的差异为338;DTPA提取态Cd含量(DTPA-Cd)从未添加Cd处理的本底土壤C0至最大添加量128mg/kg,其最大值与最小值的差异分别为9和1.4倍.土壤溶液pH值与lgKd呈显著正相关(R2=0.49,P<0.001),其与PW-Cd含量呈显著负相关(R2=0.41,P<0.05);单一的土壤溶液Mg2+可解释46%的DTPA-Cd的变异.在对土壤性质的回归分析中,并未发现有单一的主控土壤性质影响Cd的固液分配,当回归方程中加入其它土壤或溶液性质时,可在一定程度上提高拟合模型的预测能力.总之,土壤溶液pH值和Mg2+Kd和有效态Cd含量的影响比较显著.  相似文献   

3.
基于定量构效关系(QSAR),运用线性(逐步多元回归MLR)和非线性(支持向量机SVM)两种计算方法开发了两种可靠且高效预测聚苯乙烯二乙烯基苯树脂(XAD)和空气之间分配系数(KXAD-A)的模型.构建模型的数据包含醇类(Alcohols),苯类(Benzenes),多氯联苯(PCBs)和多环芳香烃(PAHs)等,共计70种有机污染物.两个模型的决定系数R2adj和外部验证系数Q2ext均在0.930以上,同时所有物质均在定义的应用域内,结果表明两种QSAR模型有较高的拟合度、稳健性和较为优秀的预测能力,且非线性(SVM)模型比线性(MLR)模型的拟合效果更好.  相似文献   

4.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

5.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

6.
北京城区PM2.5各组分污染特征及来源分析   总被引:1,自引:1,他引:0  
为探索北京城区大气细颗粒物( PM2. 5) 及其各组分的浓度特征,于 2019 年全年在车公庄地区开展了 PM2. 5及水溶性离子、碳质组分及金属元素的连续在线监测. 结果表明,2019 年北京城区 ρ( PM2. 5) 平均值为 46. 7 μg·m- 3,化学组分中 ρ[有机物( OM) ]、ρ( NO3-) 、ρ( SO42-) 、ρ( NH4+) 、ρ( EC) 、ρ( Cl-) 、ρ( 微量元素) 和 ρ( 地壳物质) 分别为 9. 1、11. 1、5. 7、5. 4、1. 4、0. 9、1. 6 和 7. 3 μg·m- 3,SNA ( SO42-、NO3-和 NH4+) 合计占到了...  相似文献   

7.
异养硝化菌株Acinetobactor sp.JQ1004能够在初始氨氮浓度为0~2000mg/L范围内进行生长和氮源代谢,菌株在初始氨氮浓度为2500mg/L条件下被完全抑制,无法生长.当菌株在温度为30℃,pH7.5,转速为160r/min,初始氨氮浓度分别为100,300,500,700,1000,1500,2000,2500mg/L条件下培养时,菌株的最大比生长速率分别为0.251,0.308,0.286,0.243,0.197,0.115,0.088h-1,相应的最大比氨氮降解速率分别为1.335,1.906,1.859,1.759,1.562,1.286,0.965g/(gDCW·d).在高浓度氨氮和游离氨的抑制作用下,菌株的比生长速率及对氨氮的比降解速率随初始氨氮浓度的增加呈先增加后降低的趋势.3种基质抑制动力学模型(Haldane,Yano,Aiba模型)均能够很好地模拟菌株随初始氨氮浓度的生长变化规律,对应地相关系数分别为0.9944,0.9983和0.9929.由Haldane模型可知,菌株在不同初始氨氮浓度(游离氨)条件下的最大氨氮比降解速率μmax为2.604h-1,基质亲和系数Ks为22.57mg/L,基质抑制系数Ki为1445.31mg/L.其中由Ki值远大于自养菌(硝化细菌及厌氧氨氧化菌等)的值,这表明异养硝化菌株Acinetobactor sp.JQ1004比自养菌具有更强的抗抑制能力.另外,菌株在游离氨浓度为5.436mg/L时,比生长速率达到最大值0.583h-1.以上研究结果表明,菌株JQ1004在处理高氨氮废水中具有潜在的应用前景.  相似文献   

8.
为研究富氨地区秋冬季不同PM2.5污染级别气溶胶酸性及其影响因素, 于2018年10月15日~2019年2月28日, 选择郑州市2个非城区点位——新密和航空港进行PM2.5膜样本采集, 采用离子色谱法测定其水溶性离子, 通过ISORROPIA-Ⅱ模型计算气溶胶pH值, 并分不同污染等级探讨PM2.5主要离子浓度和pH值范围.结果显示: 采样期间NO3-、NH4+和SO42-是3种最主要的离子, 随着污染程度的加剧, NO3-、SO42-、NH4+呈现上升趋势, 其中NO3-和NH4+的增长速度较大; NH4+/SO42-的比值大于0.75, 大气处于富氨条件, NH4+主要存在形式是(NH4)2SO4、NH4NO3、NH4Cl; 所选两点位PM2.5的pH值呈中等酸性, 新密4.6±0.6、航空港4.6±0.7, 随着污染的加剧, pH值的变化范围逐渐收窄; 敏感性分析表明影响秋冬PM2.5的pH值变化的主要共同驱动因素是TNH3(总氨(气体+气溶胶))、SO42-和温度, 随着污染的加剧, 由TNH3对气溶胶酸度的影响最大变为SO42-对酸性的影响最大; 随着pH值增大, 总硝酸倾向于向颗粒态移动, 总氨倾向于向气态移动, 呈相反变化.  相似文献   

9.
经溶胶-凝胶法制备不同镧(La)掺杂量的二氧化钛(TiO2),得到光催化转化吸附回收有机磷的复合材料.结果表明,La与TiO2掺杂物质的量比为0.002并经过煅烧和掺杂物质的量比为0.02未经煅烧的2种材料,以6:4的比例混合,所得复合材料La@TiO2(6:4)为粒径约13nm的锐钛矿型TiO2,表面有球形聚集体但分布较均匀,其光谱范围较纯TiO2发生红移,因而光催化效率提高.当有机磷浓度20mg/L、La@TiO2(6:4)投加量为1g/L、溶液pH值为9时,有机磷回收率最高达85%.溶液中的NO3-、Cl-、SO42-对磷回收影响不大,CO32-有抑制作用;材料经解吸后可多次重复利用.研究表明La@TiO2(6:4)为有前景的有机磷回收复合材料.  相似文献   

10.
对2017年9月至2018年8月、12月采集的乌鲁木齐市PM2.5、“沙雪”样品和克拉玛依土样的水溶性离子进行分析,并结合城市主要风向、扫描电镜联能谱(SEM/EDS)和后向轨迹模型(HYSPLIT),对环境中盐尘粒子的来源及其对大气颗粒物形成的影响进行了研究.结果表明:PM2.5中总水溶性离子平均浓度为(62.65±64.75)μg/m3,变化范围为0.69~328.60 μg/m3.其中SO42、Ca2+、Na+、Cl-、K+和Mg2+ 6种盐尘粒子浓度分别为(22.73±26.45),(2.11±3.11),(1.85±1.43),(0.40±0.40),(0.28±0.20),(0.21±0.15)μg/m3.四季风向结合HYSPLIT模型结果可知,PM2.5中盐尘粒子主要来源于艾比湖及玛纳斯盐湖的气团;受风沙影响,乌鲁木齐市雪样中Cl-、SO42-、Ca2+、K+、Mg2+和Na+分别增加了30,19,20,5,7和5倍.  相似文献   

11.
12.
13.
基于静止卫星高分四号(GF-4)遥感数据,利用6SV辐射传输模型与暗目标算法进行高空间分辨率气溶胶光学厚度(AOD)遥感反演;在此基础上,结合地面监测站大气细颗粒物(PM2.5)浓度、气象资料等数据,采用物理订正方法及线性混合效应模型,实现长三角城市群区域大尺度空间连续的PM2.5浓度遥感反演;最后利用十折交叉验证法对反演精度进行验证.结果表明:GF-4反演的AOD结果分辨率较高,空间连续性好,与AERONET地基监测相关性R达到0.82;利用GF-4 AOD的PM2.5估算模型精度较高,模型估算PM2.5浓度与地面实测数据拟合度R2为0.74;在分春夏秋冬4个季节建模情景下,交叉验证R2依次为0.67,0.59,0.63和0.72,平均绝对误差MAE为10.40,7.42,10.10,13.34μg/m3,表明GF-4卫星适用于区域PM2.5浓度监测.  相似文献   

14.
IntroductionItiswidelyrecognizedthatthephysicochemicalprofileoforganicchemicalslargelydeterminestheirdistributionbetweenenvironmentalmedia .Fortheenvironmentalbehaviorsoforganiccontaminants,watersolubility(SW)andoctanol waterpartitioncoefficient(KOW)aretremendouslyimportant.Octanol waterpartitioncoefficienthasbeenwidelyrelatedtobiochemicaland orbiologicalactivityinquantitativestructure activityrelationships(QSARs) (Leo ,1 971 ) .Watersolubilitycorrespondstothedispersiontendencyandtothereca…  相似文献   

15.
基于主成分回归的整合模型预测重金属混合物毒性   总被引:1,自引:0,他引:1  
为解决CA和IA模型预测结果共线性的问题,基于主成分回归改进已有整合加和模型ICIM,建立新的混合物整合模型(PCR-IAM),并预测加和、协同和拮抗相互作用的重金属混合物联合毒性.以混合物实验浓度为因变量,浓度加和与独立作用预测混合物效应浓度的主成分回归为自变量,建立了PCR-IAM模型.以4个二元混合物体系(Ni-Fe、Ni-Pb、Ni-Cd和Ni-Cr)共20条混合物射线的联合毒性(共240个样本点)验证PCR-IAM模型的预测能力.结果表明,所有二元混合物的PCR-IAM模型的决定系数(R2)和留一法(LOO)交叉验证相关系数(Q2)值均大于0.95,表明PCR-IAM模型能够准确预测20条加和效应、协同和拮抗作用混合物的联合毒性.因此,经验数学模型PCR-IAM模型可以准确预测加和效应、协同和拮抗作用混合物毒性,为构建更合理的整合模型及环境混合污染物的风险评估提供可靠的技术手段.  相似文献   

16.
本研究运用最小相关系数法(MRS),使用元素碳(EC)作为示踪物,得到一次排放的质量吸光效率(MAEp),结合黑碳仪(AE33)和有机碳/元素碳分析仪获得实测的质量吸光效率MAEt,进而通过MAEt/MAEp的比值得出吸光增强系数(Eabs).采样站点位于广州市城区暨南大学大气超级监测站,采样时间涵盖了干季(2019年1月26日~3月31日)和湿季(2018年5月1日~7月31日).对广州市城区的黑碳气溶胶及其光学特征进行分析,EC在干季的平均浓度(1.93±1.38)μgC/m3高于湿季(1.46±0.75)μgC/m3,而Eabs520在干季的均值(1.26±0.34)低于湿季(1.63±0.55).Eabs520在干湿季的日变化差异明显,但有机碳(OC)、EC、OC/EC、波长指数(AAE470-660)均为干季高于湿季.分析发现气溶胶负载补偿参数k值与Eabs520在湿季呈现出较好的相关性,而在干季相关性较差,可能与生物质燃烧的影响有关;探讨了O3、NO2和SOC/OC对Eabs520的影响,在干季O3Eabs520的相关性较差(R2=0.21),在湿季较好(R2=0.46),SOC/OC却展现出了相反的关系,而NO2在干季和湿季与Eabs520的相关性都较差(R2=0.01),并发现温度对Eabs520存在一定的影响.通过后向轨迹聚类分析发现,长距离传输气团的的黑碳Eabs520值较高.  相似文献   

17.
本研究运用最小相关系数法(MRS),使用元素碳(EC)作为示踪物,得到一次排放的质量吸光效率(MAEp),结合黑碳仪(AE33)和有机碳/元素碳分析仪获得实测的质量吸光效率MAEt,进而通过MAEt/MAEp的比值得出吸光增强系数(Eabs).采样站点位于广州市城区暨南大学大气超级监测站,采样时间涵盖了干季(2019年1月26日~3月31日)和湿季(2018年5月1日~7月31日).对广州市城区的黑碳气溶胶及其光学特征进行分析,EC在干季的平均浓度(1.93±1.38)μgC/m3高于湿季(1.46±0.75)μgC/m3,而Eabs520在干季的均值(1.26±0.34)低于湿季(1.63±0.55).Eabs520在干湿季的日变化差异明显,但有机碳(OC)、EC、OC/EC、波长指数(AAE470-660)均为干季高于湿季.分析发现气溶胶负载补偿参数k值与Eabs520在湿季呈现出较好的相关性,而在干季相关性较差,可能与生物质燃烧的影响有关;探讨了O3、NO2和SOC/OC对Eabs520的影响,在干季O3Eabs520的相关性较差(R2=0.21),在湿季较好(R2=0.46),SOC/OC却展现出了相反的关系,而NO2在干季和湿季与Eabs520的相关性都较差(R2=0.01),并发现温度对Eabs520存在一定的影响.通过后向轨迹聚类分析发现,长距离传输气团的的黑碳Eabs520值较高.  相似文献   

18.
以京津冀2020年318个地面监测站点的PM2.5数据为估算因子,构建了时空线性混合效应模型(STLME)和时空嵌套线性混合效应模型(STNLME),为AOD数据的补值研究提供了一种新方法.结果表明:在有AOD-PM2.5匹配数据的日期,上述两个模型估算精度相近,交叉验证后决定系数R2分别为0.868和0.874,均方根误差RMSE分别为0.112和0.109;在无AOD-PM2.5匹配数据的日期,嵌套模型估算精度明显高于非嵌套模型,交叉验证后决定系数R2分别为0.63和0.26.经过模型补值后,研究区监测站点所在网格AOD数据空间维有效比率从原始数据的44.35%提高到99.35%,时间维有效比率从87.94%提高到100%;同时,每个站点的年均AOD值都有明显提高,弥补了高PM2.5浓度条件下缺失的AOD数据,可以减少空气污染和健康研究中暴露评估的偏差.  相似文献   

19.
采用优化设计的动态通量箱,对不同盐分(NaCl和Na2SO4)和盐度(0~5%)的盐渍化土壤土-气界面的汞交换通量进行动态监测,研究盐渍化对污灌区土壤汞和大气释放的影响.结果表明:(1)两种盐分类型对土壤Hg释放的影响呈相反趋势.与未发生盐渍化的对照土壤相比,随着NaCl盐度梯度的上升,土壤Hg释放通量呈现上升趋势,5%盐度处理下,Hg通量均值与对照相比提高了48.94%;而随着Na2SO4盐度梯度的上升,土壤Hg释放通量呈现下降趋势,5%盐度处理下,Hg通量均值与对照相比降低了20.62%.(2)土壤盐分含量与土壤汞释放通量均值之间呈线性关系.对于NaCl,含量x(g/kg)与汞通量y [ng/(m2·h)]之间的模型为y=0.8258x+86.709(R2=0.9734),对于Na2SO4,模型为y=-0.3354x+85.997(R2=0.9581).从研究结果来看,高浓度的NaCl环境对土壤汞释放通量有显著影响,土壤的盐渍化趋势会使汞释放及作物吸收风险更趋严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号