首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为评估成都市2017年夏季(6-8月)开展的臭氧防治行动措施对空气质量的改善效果,采用在线监测系统对成都市环境空气中VOCs物种进行监测,对比分析VOCs污染特征、OFP(臭氧生成潜势),并利用PMF(正矩阵因子法)模型对VOCs主要来源进行解析.结果表明:2017年8月$φ$(VOCs)平均值为31.85×10-9,比2016年同期下降了32%,其中,$φ$(芳香烃)和$φ$(卤代烃)平均值下降最为明显.$φ$(VOCs)日变化呈双峰型,分别在每日09:00和23:00左右达峰值,臭氧防治行动期间$φ$(VOCs)月均小时值低于2016年同期.VOCs的OFP敏感性物种以烯烃为主,占总VOCs OFP贡献的48%.2017年8月成都市OFP为61.89×10-9,比2016年同期下降44%.VOCs源解析结果发现,2017年8月油气挥发源、有机溶剂使用源、工业源、生物质燃烧源等排放占比均有所下降,而机动车排放源和天然源的排放占比增加.研究显示,成都市2017年夏季臭氧防治行动对成都市大气VOCs排放有明显的控制效果.   相似文献   

2.
2018年8月采集太原市大气样品,分析太原市夏季大气VOCs的污染特征,并利用最大增量反应活性系数法(MIR系数法)估算了VOCs的臭氧生成潜势(OFP).结果表明,太原市夏季大气VOCs浓度为17.36~89.60μg/m3,其中烷烃占比58.01%、芳香烃占比20.06%、烯烃占比16.52%、炔烃占比5.40%.大气VOCs浓度变化表现为明显的早晚双高峰特征,且以早高峰影响为主.OFP分析显示,烷烃、烯烃、芳香烃、炔烃分别占总OFP的19.16%、47.74%、31.75%、1.35%,C3~C5类烯烃是活性较高的物种,对O3生成贡献较大.  相似文献   

3.
为探究热带地区环境空气中挥发性有机物(VOCs)的污染特征,利用三亚市2019年VOCs在线监测数据,全面分析了VOCs的污染特征、来源以及对O3的影响.结果表明:①总挥发性有机物(TVOCs)日均体积分数范围为2.05×10-9~19.74×10-9,且以烷烃(71.4%)和烯烃(20.5%)为主.②VOCs优势物种丙烷、正丁烷、乙烷、异丁烷、乙烯、乙炔、苯和甲苯的体积分数日变化均呈早晚双峰的特征;φ(异戊二烯)呈白天显著高于夜间的特征,其季节性变化规律与光照变化基本一致.③对臭氧生成潜势(OFP)贡献最大的是烯烃(70.6%),其中异戊二烯的OFP贡献率(41.9%)最大,其次是烷烃(19.9%).④春夏季φ(NO2)和φ(VOCs)均较低,难以通过光化学反应生成较高的φ(O3),秋冬季φ(O3)显著升高主要与东北方向污染物传输有关.⑤正交矩阵因子模型(PMF)解析结果表明,VOCs来源分别为交通源(46.52%)、溶剂使用源(18.25%)、植物源(12.36%)、工业源(11.99%)和燃烧源(10.88%).研究显示,三亚市环境空气中φ(VOCs)受交通源排放影响较大,应加强管制以削减环境空气中VOCs活性较大的物种,从而减少O3的生成.   相似文献   

4.
唐山夏季大气VOCs污染特征及臭氧生成潜势   总被引:1,自引:2,他引:1       下载免费PDF全文
丁洁然  景长勇 《环境工程》2016,34(6):130-135
在唐山市区对大气环境VOCs进行样品采集,对VOCs污染特征及臭氧生成潜势进行了分析。结果表明:唐山市区VOCs主要以烷烃和芳香烃为主,分别占VOCs总质量浓度的50.3%和30.4%。烷烃和烯烃以丁烷和丙烯等组分为主,芳香烃以苯、甲苯、乙苯和二甲苯为主。由于污染源排放强度、气象条件和光化学反应强弱的影响,VOCs浓度有明显的小时变化特征,8:00—10:00浓度最高,中午较低,且与早上相比,烯烃浓度降低比例中午最大。VOCs臭氧生成潜势敏感性组分以烯烃为主,占总VOCs臭氧生成潜势贡献的49.0%~66.8%,其主要敏感性种类为丙烯。  相似文献   

5.
为了解钢铁企业的大气污染特征,使用在线监测仪器于2016年7月对某典型钢铁企业VOCs(挥发性有机化合物)、PM2.5和NMHC(非甲烷烃)等污染物进行观测,同时基于FAC(气溶胶生成系数)估算了该区域的SOA(二次有机气溶胶)生成潜势.结果表明:观测期间ρ(总VOCs)为(106.08±63.81)μg/m3,与ρ(NMHC)(以C计)的相关系数(R2)达到了0.8(P < 0.05)以上;VOCs中主要类别为烷烃和芳烃;ρ(O3)超标期间的ρ(苯)和ρ(甲苯)分别比ρ(O3)未超标时间段高47.0%和37.2%,并且高ρ(总VOCs)期间芳烃占比高达46.0%,这可能与钢铁企业在炼焦时苯系物(苯、甲苯和二甲苯)排放有关.ρ(总VOCs)、ρ(NMHC)、ρ(烷烃)、ρ(芳烃)和ρ(乙炔)均呈早晚高峰值的日变化特征,而ρ(烯烃)由于异戊二烯受天然源排放影响,呈午间单峰值的特征.观测期间的SOA生成潜势为2.54 μg/m3,较城区高出76.4%,显示钢铁企业SOA对PM2.5具有一定贡献;其中芳烃对SOA生成贡献高达97.2%,主要贡献组分包括苯、间/对-二甲苯、乙苯、苯、邻-二甲苯.研究显示,钢铁企业VOCs污染治理应重点控制苯系物,同时烷烃的排放也不容忽视.   相似文献   

6.
天津临港某仓储公司VOCs排放特征及臭氧生成潜势   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究储运环节VOCs的排放影响,参考HJ 732-2014《固定污染源废气挥发性有机物的采样气袋法》,选择天津临港工业园区某石化业仓储公司为重点监测对象,对企业的厂界上下风向、有组织和无组织排放源进行采样,利用在线仪器PTR-TOF-MS对采集的样品进行VOCs定量分析,并对厂界处O3-NOx -VOCs三者的关系和污染物的臭氧生成潜势进行研究.结果表明:有组织排放源——洗涤塔、活性炭吸附塔1号和2号的∑ρ(VOCs)(所有VOCs组分浓度之和)分别为18.91、71.48和5.65 mg/m3,无组织排放源——罐组和装卸车台∑ρ(VOCs)分别为0.39和0.087 mg/m3;甲醇为企业的特征污染物,此外还有烷烃和少量的烯烃,有组织排放中活性炭吸附塔2号是影响厂界污染特征的主要环节;有组织和无组织VOCs排放量分别为0.57和214.26 t/a.对O3-NOx-VOCs三者关系的分析显示,企业厂界处O3的形成主要受VOCs控制,其臭氧生成潜势为烯烃>醇类>烷烃,除考虑醇类的影响外,烯烃也是不可忽视的环境影响因素.   相似文献   

7.
选取上海市某工业区内专项化学品制造行业中有代表性的10家企业,使用苏玛罐对各企业有组织排放废气进行采样,通过GC-MS(气相色谱-质谱联用仪)对106种VOCs进行分析,研究了专项化学品制造行业的VOCs排放特征,并使用MIR(最大增量反应活性)法计算了各企业排放VOCs对臭氧生成的贡献.结果表明:OVOCs(含氧挥发性有机物)和芳香烃是专项化学品制造行业的VOCs特征组分,OVOCs与芳香烃质量分数之和为65.0%~100.0%;8家企业排放的VOCs中质量分数最高的物种均为OVOCs,w(OVOCs)为55.8%~99.9%.异丙醇、四氢呋喃、丙酮、乙酸乙酯等OVOCs及苯、甲苯等芳香烃是专项化学品制造行业的特征物种.10家企业排放VOCs的OFP(臭氧生成潜势)为1.9~933.5 mg/m 3,OVOCs和芳香烃是专项化学品制造企业的主要活性组分,累计对OFP的贡献率在80.1%~100.0%之间.异丙醇、四氢呋喃、丙酮、乙酸乙酯、甲基异丁基酮、苯和甲苯等是专项化学品制造行业的关键活性物种.研究显示,专项化学品制造行业VOCs污染治理应重点控制OVOCs和芳香烃.   相似文献   

8.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

9.
刘文文  方莉  郭秀锐  聂磊  王敏燕 《环境科学》2019,40(9):3942-3948
本研究在京津冀地区选取23家典型印刷企业进行调研,并对其中具备采样条件的企业通过气袋采样-GC-MSD/FID采集及分析系统,获得48组分析结果,定量分析了京津冀地区印刷企业VOCs的排放特征,并估算其臭氧生成潜势.结果表明,各企业排气筒有组织排放的VOCs(以非甲烷总烃表征)浓度差异很大,包装印刷企业VOCs排放浓度范围为29. 9~755. 0 mg·m~(-3),出版物印刷企业VOCs排放浓度范围为3. 3~99. 0 mg·m~(-3);各企业车间印刷工位中,包装印刷企业VOCs排放浓度在129. 7~958. 4 mg·m~(-3)之间,出版物印刷企业VOCs排放浓度范围为19. 1~113. 7 mg·m~(-3);包装印刷企业排放的VOCs浓度普遍高于出版物印刷企业,这与其使用溶剂型油墨有关. VOCs组分构成方面,包装印刷和出版物印刷企业印刷工位排放的VOCs中,含氧VOCs均为首要VOCs种类,占比在32. 6%~99. 4%之间,其次是烷烃.臭氧生成潜势方面,印刷企业臭氧生成潜势(OFP值)平均值为505. 5 mg·m~(-3),其中包装印刷企业为564. 1 mg·m~(-3),出版物印刷企业为52. 9 mg·m~(-3);臭氧生成系数(SR值)平均值为1. 24 g·g-1,其中包装印刷企业为1. 70 g·g-1、出版物印刷企业为0. 89 g·g-1.从OFP值和SR值可以看出,包装印刷企业应作为未来京津冀地区印刷行业VOCs管控的重点.  相似文献   

10.
通过对京津冀地区20家火葬场火化车间挥发性有机物(Volatile Organic Compounds, VOCs)现场采样和实验室分析,探究其环境VOCs浓度水平及化学组分特征,并采用最大增量反应活性(Maximum Incremental Reactivity, MIR)计算了不同组分的臭氧生成潜势(Ozone Formation Potential,OFP),最后利用美国EPA推荐的暴露风险评价模型对11种VOCs组分的非致癌和致癌风险进行了评价.结果表明:①火化车间VOCs浓度为147~3926 μg·m-3,平均浓度为993 μg·m-3,超过了国家室内空气质量标准中总挥发性有机化合物(Total Volatile Organic Compounds, TVOC)限值.在化学组分中,烯烃、苯及苯系物和烷烃占比较大,分别贡献了32.6%、25.5%和18.2%.②烯烃对臭氧生成潜势OFP的贡献率最高,达到61.8%,其次是苯及苯系物和烷烃,分别贡献了25.6%和6.3%,三者OFP贡献之和达93.6%,是火化车间VOCs组分中臭氧生成潜势的关键活性组分.③非致癌风险方面,苯的危害指数(Hazard Index, HI)值为1.4,对暴露人群具有明显的非致癌风险;致癌风险方面,苯、甲苯和二氯甲烷的风险值(R)均超过了致癌风险阈值,需采取措施进行重点控制,以确保区域内人员身体健康.  相似文献   

11.
采用固相吸附-热脱附-气质联用技术对浙江某市典型彩钢企业生产车间与废气处理装置进行了VOCs定量分析,获得了该行业的特征VOCs成分谱,并利用最大反应增量法(MIR)和气溶胶转化系数法(FAC)估算了彩钢行业各组分VOCs对臭氧(O3)及二次有机气溶胶(SOA)的生成潜势.结果显示:该市彩钢行业VOCs成分复杂,酯类和醇类占比在50%以上;车间VOCs浓度水平受温度影响大,夏季浓度约为冬季浓度的1.6~4.2倍;通过对O3和SOA的计算可知,芳烃类、醇类物质对O3生成潜势贡献率分别为70.0%和28.05%,而SOA生成潜势完全由芳烃类物质提供.  相似文献   

12.
移动源排放VOCs特征及臭氧生成潜势研究—以兰州市为例   总被引:4,自引:0,他引:4  
高浓度近地面臭氧(O_3)污染是国内外许多城市面临的大气污染问题,且近年来O_3浓度呈逐渐升高的趋势.随着城市规模日益扩大,移动源成为VOCs的主要排放源之一,对移动源的O_3生成潜势进行评估,并识别其关键物种和重点污染区域,可为城市O_3控制对策的制定提供科学依据.本文以兰州市移动源为例,结合排放系数、交通流量及相关统计数据,建立兰州市VOCs移动源排放清单,并使用最大增量反应活性(MIR)估算移动源VOCs的臭氧生成潜势(OFP).结果表明,兰州市汽油车是移动源中最主要的OFP贡献源类,占移动源的71.12%;烯烃和芳香烃为移动源总OFP主要的贡献者,主要贡献物种为:乙烯、丙烯、甲醛、3-甲基-1-丁烯、甲苯、正丁烯、乙炔、间二甲苯、1,2,4-三甲基苯、邻二甲苯,这10个物种的OFP占移动源总OFP的67.29%;根据兰州市移动源VOCs排放的OFP贡献空间分布结果,移动源VOCs排放的重点控制区域为城关区和七里河区.  相似文献   

13.

2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)µg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。

  相似文献   

14.
采用挥发性有机物(VOCs)在线监测仪(EXPEC 2000-MS)于2020年1月1日-2月11日对济源市环境空气中VOCs进行监测,分析了疫情防控前和期间TVOCs及其组分的变化特征、臭氧生成潜势(OFP)及来源解析.结果表明,疫情防控期间济源市TVOCs浓度均值为121.7×10-9,比疫情防控前增加了61.2%...  相似文献   

15.
成都市大气环境VOCs污染特征及其健康风险评价   总被引:2,自引:6,他引:2  
于2012年9月,在成都市分别选取代表城市大气环境和路边大气环境的两个采样点对大气中挥发性有机物(VOCs)进行采样,对不同大气环境中VOCs的浓度水平与变化特征、组成和反应活性进行分析,并对其中的芳香烃化合物进行健康风险评价.结果表明,成都市城市大气环境和路边大气环境中TVOCs的平均质量浓度分别为(108.57±52.43)μg·m~(-3)和(132.61±49.31)μg·m~(-3),不同大气环境中各烃类物质浓度均呈现出烷烃芳香烃烯烃炔烃的趋势;城市和路边大气环境中芳香烃和烯烃对臭氧生成潜势(OFP)贡献较大,关键物种均为间/对二甲苯、甲苯、乙烯、邻二甲苯和丙烯;不同大气环境中的苯、甲苯、乙苯和二甲苯(BTEX)对人体的非致癌风险和危害指数均小于1,对暴露人群不存在非致癌风险;致癌物质苯对人体的致癌风险高于安全阈值1.00E-06,对暴露人群可能存在致癌风险.  相似文献   

16.
选取成都市5大典型有机溶剂使用行业——包装印刷业、人造板制造业、家具制造业、制鞋业和化学品制造业具有代表性的15家企业测定挥发性有机物(VOCs)排放组分,并对其不同组分的臭氧生成潜势(OFP)进行分析.研究结果表明:不同行业排放的VOCs之间存在较大差异,包装印刷业和人造板制造业主要排放含氧VOCs(OVOCs),家具制造业主要排放芳香烃和OVOCs,制鞋业和化学品制造业主要排放OVOCs、芳香烃和烷烃;芳香烃是化学反应活性最强的组分,对臭氧的生成贡献普遍较大,其中贡献最大的邻二甲苯及间二甲苯的OFP值分别为92.13 mg·m~(-3)和89.65 mg·m~(-3),二者占总OFP的40%;五大典型有机溶剂使用行业中,家具制造业对O_3生成的贡献最大,OFP贡献率为34.59%.  相似文献   

17.
于2020年9~10月在深圳北部典型工业区开展在线观测以分析该地VOCs污染状况,并使用基于观测的模型(OBM)研究臭氧生成敏感性.观测期间VOCs的总浓度为48.5×10-9,浓度水平上烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈.臭氧生成潜势(OFP)为320μg/m3,其中芳香烃、OVOCs以及烷烃贡献最大,这3类物种OFP贡献总和超过90%.乙烯与苯呈现“两峰一谷”的日变化特征,主要受到机动车排放的贡献.相对增量反应性(RIR)分析表明,削减人为源VOCs对控制当地臭氧生成最为有效,当中又应优先控制芳香烃;经典动力学曲线(EKMA)分析表明该片区臭氧生成处于过渡区,在开展VOCs区域联防联控的同时,需要在当地进行有力的NOx控制以强化该地区臭氧污染长期管控.  相似文献   

18.
基于国家干线公路4346个交通监测站日平均监测数据,采用移动源VOCs测算方法,建立国家干线移动源VOCs排放清单,使用最大增量反应活性(MIR)估算VOCs的臭氧生成潜势(OFP),并通过动态分段技术和核密度估计方法对臭氧生成强度的空间特征进行分析.结果表明,客车是国家干线移动源VOCs年排放量最大的源,占客货总排放量70.50%;广东省年排放量最大,占全国干线公路VOCs排放量的10.7%;G15沈海高速年排放量最大,占全国干线公路VOCs排放量的5.4%.烯烃和芳香烃为移动源OFP主要的贡献者,前十种有机污染物占干线移动源总OFP的67.29%.从客货车日均OFP强度上来看,受车流量影响,各干线差异明显.北京天津呈团簇状集聚,至石家庄一线为带状分布;济南淄博潍坊青岛一线呈弯月带状分布;南京苏州上海杭州呈团状,至上海又集聚;粤港澳大湾区以深圳为中心高度聚集;沈阳、郑州、西安、武汉、重庆等交通枢纽出现次一级强度集聚.  相似文献   

19.
基于聊城市2021年6月挥发性有机物(VOCs)和臭氧(O3)在线监测数据,系统分析了O3污染日和清洁日VOCs的浓度水平、组成特征、日变化特征和O3生成潜势(OFP),通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)识别了VOCs的潜在源区,利用特征物种比值和正定矩阵因子分解(PMF)模型对VOCs来源进行了解析.结果表明,聊城市2021年6月O3污染日和清洁日ρ(VOCs)小时均值分别为(115.38±59.12)μg·m-3和(88.10±33.04)μg·m-3,各类别VOCs浓度水平在污染日和清洁日的大小均表现为:含氧挥发性有机物(OVOCs)>烷烃>卤代烃>芳香烃>烯烃>炔烃>有机硫.污染日和清洁日浓度差值较大的VOCs物种均出现在二者VOCs浓度小时均值贡献前10物种中.总VOCs、烷烃、炔烃、芳香烃、卤代烃和有机硫浓度日变化趋势表现为日间低于夜间,OVOCs浓度日变化呈现出白天高,夜间低的特...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号